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Abstract: The integration of drone-based visual data and vehicle telemetry offers a promising
approach to addressing urban traffic congestion. Machine learning (ML) provides an effective
framework for processing and fusing these diverse data sources to generate actionable insights for
congestion mitigation. This paper explores strategies for leveraging ML techniques to combine
visual data from drones and telemetry data from vehicles, focusing on applications in traffic flow
optimization, incident detection, and real-time rerouting. Key challenges, such as data heterogeneity,
computational efficiency, and the need for robust models under dynamic conditions, are examined.
We review existing ML methods, including deep learning for visual data analysis and ensemble
techniques for telemetry fusion, and propose novel approaches that leverage spatiotemporal modeling
and federated learning. Experimental results on simulated and real-world datasets demonstrate the
potential of these strategies to improve traffic prediction accuracy and reduce congestion through
proactive interventions. The paper concludes with recommendations for implementing scalable ML
systems that integrate drone and vehicle data streams, addressing practical considerations such as
edge computing, privacy, and adaptability to varying urban contexts.

Keywords: congestion mitigation, data fusion, drone data, machine learning, spatiotemporal model-
ing, traffic optimization, vehicle telemetry.

1. Introduction

Traffic congestion has become one of the most pressing challenges in modern urban
transportation systems, exerting a profound influence on the daily lives of millions of
commuters worldwide. Congestion not only increases travel times but also exacerbates
fuel consumption and greenhouse gas emissions, leading to significant economic and
environmental costs. The traditional approaches to traffic management, which often rely on
static infrastructural solutions such as signal timing optimization and roadway expansion,
have proven insufficient in accommodating the dynamic and complex nature of modern
transportation systems. However, the proliferation of advanced sensing technologies,
including drones equipped with high-resolution imaging capabilities and vehicles outfitted
with telemetry sensors, has paved the way for innovative approaches centered around
multimodal data fusion. This paradigm leverages diverse data streams to provide a holistic
view of urban traffic dynamics, enabling more effective and adaptive traffic management
strategies [1,2].

Drone-based visual data offer a macroscopic perspective of urban traffic, capturing
real-time insights into traffic flow patterns, incident hotspots, and road conditions. These
aerial platforms have the unique advantage of high spatial coverage, allowing for the
monitoring of large urban areas with minimal obstructions. For example, drones can pro-
vide detailed images of traffic bottlenecks, detect road obstructions caused by accidents or
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construction, and monitor pedestrian activities at intersections. On the other hand, vehicle
telemetry data provide complementary, granular insights into individual driving behaviors,
including speed, acceleration, and location. Such data are typically captured through
in-vehicle sensors and GPS systems, yielding a wealth of information on the dynamic state
of individual vehicles [3]. The fusion of these two data modalities—macro-level visual
data from drones and micro-level telemetry data from vehicles—has immense potential for
transforming traffic management. However, the integration of such heterogeneous data
streams is a non-trivial task, necessitating sophisticated machine learning (ML) techniques
that can handle high-dimensional, noisy, and often incomplete data.

Recent advances in ML, particularly deep learning and spatiotemporal modeling,
have demonstrated remarkable potential in addressing the complexities associated with
traffic management. Deep learning models, such as convolutional neural networks (CNNs)
and recurrent neural networks (RNNs), have proven highly effective in processing and
analyzing large-scale, high-dimensional data. For instance, CNNs can be used to extract
spatial features from drone images, identifying regions of high congestion or hazardous
conditions. RNNs, particularly those equipped with long short-term memory (LSTM) units,
are well-suited for capturing temporal dependencies in telemetry data, enabling accurate
predictions of traffic flow and vehicle trajectories. By combining these techniques within a
unified framework, researchers can build predictive models capable of informing real-time
traffic management decisions, such as dynamic signal control and rerouting strategies.

The fusion of drone-based visual data and vehicle telemetry data is fundamentally a
multimodal learning problem, requiring the integration of data streams that differ not only
in their dimensionality but also in their semantic representations. One promising approach
to this challenge is the use of attention mechanisms within deep learning architectures.
Attention mechanisms allow models to selectively focus on the most relevant features in
each data stream, thereby enhancing the interpretability and accuracy of predictions. For
example, a traffic management system could use attention-based models to prioritize data
from areas with higher congestion levels, ensuring that limited computational resources
are allocated efficiently [4].

Another critical aspect of multimodal data fusion is the alignment of spatial and
temporal dimensions across data streams. This requires advanced spatiotemporal modeling
techniques that can capture the intricate dependencies between drone and telemetry data.
Graph neural networks (GNNs) have emerged as a powerful tool for this purpose, as they
can model the relationships between spatially distributed entities, such as road segments
and intersections. By representing the urban transportation network as a graph, with
nodes corresponding to specific locations and edges representing traffic flow, GNNs can
incorporate both drone and telemetry data to generate comprehensive insights into traffic
dynamics [5].

The application of ML techniques to multimodal data fusion in traffic management
also raises several practical considerations. One major challenge is the handling of noisy
and incomplete data, which are common in real-world scenarios. For instance, drone
imagery may be affected by weather conditions, such as rain or fog, while telemetry data
may suffer from signal loss or sensor malfunctions. To address these issues, researchers
have developed robust ML algorithms that incorporate data imputation and denoising
techniques. Variational autoencoders (VAEs) and generative adversarial networks (GANs)
are particularly effective in this regard, as they can generate realistic approximations of
missing data while preserving the underlying patterns.

Another challenge is the computational scalability of ML models, particularly in the
context of real-time traffic management. The high-dimensional nature of multimodal data,
combined with the need for rapid processing, necessitates the use of efficient algorithms and
hardware acceleration. Advances in distributed computing and cloud-based infrastructures
have facilitated the deployment of ML models at scale, enabling the processing of massive
data streams with minimal latency. Moreover, edge computing technologies, which allow
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for localized data processing on devices such as drones and in-vehicle systems, have further
enhanced the feasibility of real-time traffic management solutions.

The effectiveness of ML-based approaches to traffic management can be demonstrated
through several case studies and experimental evaluations. For instance, researchers have
shown that the integration of drone imagery and vehicle telemetry data can significantly
improve the accuracy of traffic flow predictions. Table 1 summarizes the performance
of different ML models in predicting traffic congestion levels based on multimodal data,
highlighting the superiority of deep learning techniques over traditional statistical methods.

Table 1. Accuracy of Traffic Congestion Prediction Models Based on Multimodal Data

Model Input Data Types Prediction Accuracy (%)
Linear Regression Telemetry Data Only 78.4
Random Forest Drone Imagery and

Telemetry Data
85.2

Convolutional Neural
Network

Drone Imagery Only 88.7

Hybrid Deep Learning
Model

Drone Imagery and
Telemetry Data

94.1

In addition to improving prediction accuracy, ML models can facilitate more effective
resource allocation in urban traffic management. For example, reinforcement learning
algorithms have been employed to optimize traffic signal timings based on real-time data,
resulting in significant reductions in congestion and fuel consumption. Table 2 provides
a comparison of resource allocation strategies based on different traffic management ap-
proaches, illustrating the advantages of ML-driven methods [6,7].

Table 2. Comparison of Resource Allocation Strategies in Traffic Management

Approach Resource Allocation Cri-
terion

Reduction in Congestion
(%)

Fixed Signal Timing Predefined Schedules 15.3
Dynamic Programming Traffic Volume Estimates 32.7
Reinforcement Learning Real-Time Multimodal

Data
48.9

While the potential benefits of multimodal data fusion and ML in traffic management
are substantial, several challenges remain to be addressed. Privacy and security concerns
are particularly significant, as the collection and processing of vehicle telemetry and drone
data involve sensitive information about individuals’ movements [8]. Ensuring data
anonymization and secure transmission is essential to mitigate these risks and gain public
trust. Furthermore, the deployment of ML models in real-world traffic systems requires
close collaboration between researchers, policymakers, and industry stakeholders to ensure
that the solutions are both technically feasible and socially acceptable.

In conclusion, the integration of drone-based visual data and vehicle telemetry data
through advanced ML techniques represents a transformative approach to addressing urban
traffic congestion. By leveraging the complementary strengths of these data modalities,
researchers can develop more accurate and adaptive traffic management systems, ultimately
reducing the economic and environmental costs of congestion. Continued advancements
in ML algorithms, computational infrastructures, and data privacy measures will be critical
in realizing the full potential of this paradigm. This paper investigates strategies for fusing
drone-based visual data and vehicle telemetry using ML, emphasizing their application
to congestion mitigation. The primary objectives are to enhance situational awareness,
improve prediction accuracy, and support real-time decision-making for traffic management
systems. We address key research questions, including: How can ML models effectively
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combine visual and telemetry data? What are the computational and scalability challenges?
And how can privacy concerns be mitigated in such systems?

The remainder of this paper is organized as follows. Section 2 reviews related work in
data fusion and traffic management using ML. Section 3 details the proposed ML strategies,
including data preprocessing, model architectures, and evaluation metrics. Section 4
presents experimental results, highlighting the effectiveness of the proposed approaches.
Finally, Section 5 concludes with a discussion of findings and future research directions.

2. Related Work

The integration of visual and telemetry data for traffic management has gained signifi-
cant traction in recent years, with research contributions spanning multiple dimensions,
including data fusion methodologies, machine learning applications, and practical sys-
tem implementations. Early research efforts predominantly focused on single-modal
approaches, employing either computer vision techniques to analyze drone imagery or sta-
tistical models to process telemetry data. While these methods provided valuable insights
into specific aspects of traffic dynamics, their limitations became apparent as urban traffic
systems grew in complexity and scale. Consequently, the research focus has shifted toward
multimodal data fusion, leveraging the complementary strengths of visual and telemetry
data to develop more comprehensive and effective traffic management solutions.

2.1. Visual Data Analysis

Drone-based visual data provide a unique vantage point for observing and analyzing
traffic systems. The ability to capture a bird’s-eye view of road networks enables the
identification of large-scale traffic flow patterns, congestion hotspots, and road hazards.
Traditional computer vision techniques, such as optical flow analysis, edge detection, and
feature-based object tracking, have been widely used to process drone imagery. These
methods have been particularly effective in tasks like estimating vehicle speeds, detecting
lane changes, and identifying stationary vehicles that may indicate accidents.

More recently, the advent of deep learning has revolutionized the analysis of visual
data. Convolutional neural networks (CNNs), in particular, have demonstrated exceptional
performance in tasks such as object detection, vehicle counting, and traffic density estima-
tion. For example, CNN-based frameworks like YOLO (You Only Look Once) and Faster
R-CNN have been successfully employed to detect and classify vehicles in drone footage
with high accuracy and efficiency. Additionally, vision transformers (ViTs) have emerged
as a promising alternative to CNNs, offering improved capabilities for capturing global
contextual information in high-resolution images. While these deep learning methods excel
at extracting spatial features, their ability to model temporal dependencies—crucial for un-
derstanding evolving traffic conditions—remains limited. To address this, researchers have
explored hybrid architectures that combine CNNs with recurrent neural networks (RNNs)
or attention mechanisms, enabling the integration of spatial and temporal information.

2.2. Telemetry Data Processing

Telemetry data collected from vehicles offer granular insights into individual driving
behaviors and vehicle dynamics. These data are typically acquired through a combination of
GPS, accelerometers, gyroscopes, and on-board diagnostic systems, providing information
on variables such as speed, acceleration, fuel consumption, and engine performance.
Statistical models and rule-based systems were initially employed to analyze telemetry
data, but their inability to capture complex patterns and dependencies limited their utility
in dynamic traffic environments.

Machine learning techniques have since emerged as a powerful tool for processing
telemetry data. Decision trees, random forests, and support vector machines (SVMs)
have been widely used to classify driving behaviors and detect anomalies. For example,
random forests have been applied to identify instances of aggressive driving, such as
sudden acceleration or harsh braking, based on accelerometer data. Recurrent neural
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networks (RNNs), particularly those with long short-term memory (LSTM) units, have
proven highly effective in modeling temporal dependencies in telemetry data, enabling
accurate predictions of vehicle trajectories and travel times. Ensemble methods, such as
gradient boosting frameworks like XGBoost and LightGBM, have also shown promise in
handling the noise and heterogeneity inherent in telemetry data, improving the robustness
and generalizability of predictive models.

2.3. Data Fusion Approaches

The fusion of visual and telemetry data has been extensively studied in the context of
autonomous driving, intelligent transportation systems, and smart city applications. Data
fusion approaches can generally be categorized into early fusion, late fusion, and hybrid
fusion methods, each with distinct advantages and challenges.

Early fusion methods involve concatenating raw or preprocessed features from visual
and telemetry data into a unified representation, which is then fed into a machine learning
model for joint analysis. While this approach is conceptually straightforward, it often
requires careful feature engineering to ensure compatibility between the heterogeneous
data streams. Late fusion methods, on the other hand, involve training separate models for
visual and telemetry data and combining their predictions at a later stage. This approach
offers greater flexibility, as it allows for the independent optimization of models for each
modality. However, it may fail to capture complex interactions between the data streams,
limiting its effectiveness in scenarios where such interactions are critical.

Hybrid fusion methods aim to address the limitations of early and late fusion by
incorporating advanced architectures that explicitly model the dependencies between
visual and telemetry data. Spatiotemporal networks, for example, combine convolutional
layers for spatial feature extraction with recurrent layers for temporal modeling, enabling
the joint analysis of drone imagery and vehicle telemetry data. Graph neural networks
(GNNs) have also emerged as a powerful tool for multimodal data fusion, particularly in
applications involving spatially distributed entities, such as road networks. By representing
the transportation network as a graph, with nodes corresponding to specific locations and
edges representing traffic flow, GNNs can incorporate both visual and telemetry data to
generate comprehensive insights into traffic dynamics.

Attention mechanisms have further enhanced the effectiveness of hybrid fusion meth-
ods by enabling models to selectively focus on the most relevant features in each data
stream. For instance, a traffic management system might use attention-based models to
prioritize telemetry data from areas with high congestion levels while simultaneously
leveraging visual data to monitor surrounding road conditions. These approaches have
demonstrated significant improvements in predictive accuracy and interpretability, making
them a promising direction for future research.

Despite these advancements, several challenges remain in achieving robust and scal-
able data fusion for traffic management. One major challenge is the alignment of spatial
and temporal dimensions across visual and telemetry data, particularly in dynamic traffic
conditions. Ensuring that data from different modalities are synchronized and co-registered
is essential for accurate analysis but can be difficult to achieve in practice. Additionally, the
computational demands of multimodal data fusion, particularly in real-time applications,
require efficient algorithms and hardware acceleration to ensure scalability.

The application of multimodal data fusion in traffic management has also raised im-
portant questions regarding data privacy and security. The collection and processing of
telemetry and visual data involve sensitive information about individuals’ movements,
necessitating the development of robust anonymization and encryption techniques. Ad-
dressing these challenges will be critical for the widespread adoption of multimodal data
fusion in real-world traffic systems.
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3. Proposed Machine Learning Strategies

To effectively fuse drone-based visual data and vehicle telemetry data for mitigating
urban traffic congestion, we propose a suite of advanced machine learning (ML) strategies.
These strategies address key challenges in data integration, spatiotemporal modeling,
and large-scale system deployment. Our proposed approaches include comprehensive
preprocessing pipelines, hybrid model architectures for multimodal fusion, federated
learning frameworks for scalability and privacy preservation, and rigorous evaluation
metrics for benchmarking. This section details the technical methodologies underlying
each of these components, supplemented by mathematical expressions and algorithmic
formulations.

3.1. Data Preprocessing and Augmentation

Given the inherent heterogeneity and noise in drone-based visual data and vehicle
telemetry data, preprocessing plays a critical role in ensuring the compatibility and quality
of these datasets. The first step involves extracting meaningful features from each data
modality. For visual data, object detection models, such as YOLO or Faster R-CNN, are em-
ployed to identify vehicles in aerial imagery. The outputs of these models include bounding
box coordinates, class labels, and confidence scores. Mathematically, this detection process
can be expressed as follows:

Dv = {(bi, ci, si) | i = 1, 2, . . . , N}, (1)

where bi represents the bounding box coordinates, ci is the class label (e.g., car, truck,
motorcycle), and si is the confidence score for the i-th detected object. Here, Dv denotes the
set of detected objects in a given drone image, and N is the total number of objects.

Telemetry data, on the other hand, consist of time-series measurements, includ-
ing vehicle speed, acceleration, and GPS coordinates. These data are denoted as T =
{(tk, xk, yk, vk, ak) | k = 1, 2, . . . , M}, where tk is the timestamp, (xk, yk) are the GPS coordi-
nates, vk is the velocity, and ak is the acceleration of the k-th vehicle. Temporal alignment
and spatial mapping techniques are then employed to synchronize telemetry data with
the visual data. A spatial mapping functionM transforms GPS coordinates into the pixel
space of the drone imagery:

M(xk, yk) = (uk, vk), (2)

where (uk, vk) are the pixel coordinates corresponding to the GPS location (xk, yk).
To enhance the robustness of the ML models, data augmentation techniques are ap-

plied. For visual data, augmentation methods such as rotation, scaling, and synthetic
imagery generation using generative adversarial networks (GANs) are utilized. For teleme-
try data, trajectory interpolation is performed to handle missing values, leveraging cubic
splines or Kalman filters.

3.2. Hybrid Model Architectures

To fully exploit the complementary strengths of drone-based visual data and vehicle
telemetry data, we propose a hybrid model architecture that integrates convolutional
neural networks (CNNs) for spatial analysis of visual data and recurrent neural networks
(RNNs) or transformer models for temporal analysis of telemetry data. The architecture
incorporates a fusion layer that combines the extracted features, enabling the model to
capture spatiotemporal dependencies effectively.

The overall architecture consists of three primary components: the visual feature
extractor, the telemetry feature extractor, and the fusion module. Let Xv and Xt represent
the features extracted from the visual and telemetry data, respectively. The CNN-based
visual feature extractor computes:

Xv = fCNN(Dv; Θv), (3)
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where fCNN denotes the convolutional neural network, and Θv represents the learnable
parameters. Similarly, the telemetry feature extractor, which can be an RNN or transformer
model, computes:

Xt = fRNN(T ; Θt), (4)

where fRNN represents the temporal modeling network, and Θt represents its parame-
ters.

The fusion module integrates these features using attention mechanisms or graph
neural networks (GNNs). An attention-based fusion mechanism computes the fused
representation X f as:

X f = softmax(QK⊤/
√

d)V, (5)

where Q, K, and V are query, key, and value matrices derived from Xv and Xt, and d
is the feature dimension. The fused representation is then used for downstream tasks, such
as traffic density prediction, congestion classification, and incident detection.

The training process leverages a multi-task learning framework with a joint loss
function:

L = αLdensity + βLcongestion + γLincident, (6)

where Ldensity, Lcongestion, and Lincident are loss terms corresponding to different tasks,
and α, β, and γ are weighting factors.

3.3. Federated Learning for Scalability

To address privacy and scalability concerns in large-scale urban deployments, we
propose a federated learning framework that enables decentralized model training across
edge devices, such as drones and vehicles. Federated learning minimizes data transmission
by training models locally and aggregating updates on a central server. The training process
is governed by the following optimization problem:

min
Θ

1
K

K

∑
k=1
Lk(Θ), (7)

where Θ represents the global model parameters, K is the number of edge devices,
and Lk(Θ) is the local loss function for the k-th device. The Federated Averaging (FedAvg)
algorithm is used to aggregate local updates:

Θ(t+1) =
K

∑
k=1

nk
n

Θ(t)
k , (8)

where Θ(t+1) is the updated global model, nk is the number of data points on the k-th
device, and n is the total number of data points across all devices.

To enhance privacy and security, techniques such as differential privacy and homomor-
phic encryption are integrated into the federated learning framework. Differential privacy
adds noise to model updates to obscure individual contributions, while homomorphic
encryption ensures that data remain encrypted during computations.

3.4. Evaluation Metrics and Benchmarking

The proposed methods are evaluated using a comprehensive set of metrics that reflect
both predictive accuracy and computational efficiency. For traffic density prediction,
metrics such as mean absolute error (MAE) and root mean square error (RMSE) are used:

MAE =
1
N

N

∑
i=1
|ŷi − yi|, (9)
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Algorithm 1: Federated Learning with Differential Privacy

Input: Initial model parameters Θ(0), learning rate η, number of communication
rounds T.

Output: Trained global model parameters Θ(T). [1] t = 1, . . . , T Broadcast Θ(t) to
all devices. each device k in parallel Compute local gradient gk = ∇Lk(Θ(t)).
Add noise for differential privacy: gk ← gk +N (0, σ2). Send gk to the server.
Aggregate gradients: g← 1

K ∑K
k=1 gk. Update global model: Θ(t+1) ← Θ(t) − ηg.

RMSE =

√√√√ 1
N

N

∑
i=1

(ŷi − yi)2, (10)

where ŷi and yi are the predicted and true values, respectively. For incident detection,
precision, recall, and F1-score are employed:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

, (11)

F1-score = 2 · Precision · Recall
Precision + Recall

, (12)

where TP, FP, and FN represent true positives, false positives, and false negatives,
respectively. Computational efficiency is measured in terms of inference latency and
memory usage, ensuring that the proposed methods are suitable for real-time deployment.

Benchmarking is performed on real-world datasets, such as drone video footage and
vehicle telemetry records, as well as synthetic datasets generated for controlled experiments.
Comparative analyses against baseline models demonstrate the superiority of the proposed
hybrid architecture and federated learning framework, highlighting their potential for
large-scale traffic management applications.

4. Experimental Results

To evaluate the efficacy of the proposed machine learning strategies, extensive ex-
periments were conducted on a combination of real-world and simulated datasets. The
experiments were designed to assess the performance of the hybrid model architecture, the
impact of federated learning on scalability and privacy, and the overall benefits of multi-
modal data fusion for traffic congestion mitigation. This section details the experimental
setup, results, and key insights obtained from the analysis [9,10].

4.1. Datasets and Experimental Setup

The experiments utilized two primary datasets: (1) a real-world dataset comprising
drone video footage and telemetry records from urban traffic networks, and (2) a synthetic
dataset generated to simulate controlled traffic conditions, enabling benchmarking under
various scenarios. The real-world dataset included high-resolution drone imagery captured
at 30 frames per second, annotated with bounding boxes and class labels for detected
vehicles. The telemetry data consisted of GPS trajectories [11], speed measurements, and
acceleration profiles collected from over 1,000 vehicles equipped with on-board sensors.
The synthetic dataset was generated using a traffic simulation platform, which provided
ground truth annotations for vehicle movements and congestion levels.

For the hybrid model architecture, the visual feature extractor utilized a ResNet-
50-based convolutional neural network, while the telemetry feature extractor employed
an LSTM network. The fusion layer incorporated an attention mechanism to integrate
features from the two modalities. The models were trained using the Adam optimizer
with a learning rate of 0.001 and a batch size of 64. Federated learning experiments
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were conducted on a simulated edge computing environment, where local updates were
aggregated using the Federated Averaging (FedAvg) algorithm.

4.2. Traffic Flow Prediction

The first set of experiments evaluated the accuracy of traffic flow prediction, comparing
the proposed hybrid model to single-modal models that relied solely on visual or telemetry
data. Table 3 summarizes the results, highlighting the superiority of the hybrid architecture.
The proposed model achieved a mean absolute error (MAE) of 2.45 vehicles per minute,
representing a 15% improvement over the best-performing single-modal model. The
attention mechanism in the fusion layer played a critical role in enhancing predictive
accuracy by prioritizing relevant features from each data modality.

Table 3. Performance of Traffic Flow Prediction Models

Model Input Data Types MAE (vehicles/min)
Telemetry-Only Model Telemetry Data 2.91
Visual-Only Model Drone Imagery 2.78
Proposed Hybrid Model Visual and Telemetry Data 2.45

4.3. Incident Detection Performance

The second set of experiments focused on incident detection, such as accidents or
sudden traffic bottlenecks. Precision, recall, and F1-score were used as evaluation metrics.
Table 4 presents the results, showing that the proposed multimodal fusion approach
achieved a 10% improvement in precision and a 12% increase in F1-score compared to
baseline methods. This improvement can be attributed to the enhanced ability of the hybrid
model to capture spatiotemporal dependencies, enabling more accurate identification of
anomalous events.

Table 4. Incident Detection Performance Metrics

Model Precision (%) Recall (%) F1-Score (%)
Baseline Model (SVM) 85.1 83.7 84.4
Telemetry-Only Model 87.3 85.9 86.6
Proposed Hybrid Model 95.6 92.1 93.8

4.4. Impact of Federated Learning

Federated learning experiments demonstrated significant benefits in terms of scala-
bility and privacy preservation. By enabling decentralized training across edge devices,
federated learning reduced data transmission by 60%, as measured by the total volume of
data exchanged between devices and the central server. Despite this reduction, the global
model’s performance remained comparable to that of a centrally trained model, with only
a 0.8% decrease in traffic flow prediction accuracy. This result underscores the viability of
federated learning for large-scale urban traffic systems.

To further evaluate privacy protection, differential privacy was integrated into the
federated learning framework. The added noise ensured that individual contributions from
local devices were obscured, achieving an average privacy loss of ϵ = 1.2 (small values
indicate stronger privacy guarantees).

4.5. Computational Efficiency

The proposed strategies were also evaluated for computational efficiency, focusing
on inference latency and memory usage. The hybrid model achieved an average inference
latency of 42 milliseconds per frame for traffic flow prediction and incident detection tasks,
making it suitable for real-time applications. Memory usage was optimized through model
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pruning and quantization techniques, reducing the total memory footprint by 35% without
significant loss in accuracy.

4.6. Key Insights

The experimental results highlight several key insights:
1. Multimodal Fusion: The integration of visual and telemetry data significantly

enhances predictive accuracy and incident detection performance, leveraging the comple-
mentary strengths of the two modalities.

2. Attention Mechanisms: Incorporating attention mechanisms into the fusion layer im-
proves the model’s ability to prioritize relevant features, particularly in scenarios involving
complex spatiotemporal dependencie]s.

3. Scalability with Federated Learning: Federated learning enables efficient and
privacy-preserving training across distributed edge devices, making it a practical solution
for large-scale urban deployments.

4. Computational Feasibility: The proposed strategies achieve low latency and memory
usage, ensuring their suitability for real-time traffic management systems.

In conclusion, the experimental evaluation demonstrates the efficacy and practicality of
the proposed ML strategies for addressing urban traffic congestion. Future work will focus
on extending the framework to incorporate additional data sources, such as pedestrian
movement and weather conditions, further enhancing the robustness and versatility of the
system.

5. Conclusion

This paper presented a comprehensive suite of machine learning (ML) strategies de-
signed to fuse drone-based visual data and vehicle telemetry for mitigating urban traffic
congestion. The proposed framework leveraged hybrid model architectures to effectively
integrate heterogeneous data modalities, enabling the capture of complex spatiotemporal
dependencies inherent in urban traffic systems. Advanced preprocessing pipelines ensured
the compatibility and quality of input data, addressing challenges related to noise, hetero-
geneity, and temporal alignment. By incorporating attention mechanisms and graph-based
fusion techniques, the models achieved enhanced accuracy in traffic flow prediction and
incident detection, surpassing the performance of single-modal approaches.

The adoption of federated learning demonstrated the feasibility of decentralized model
training across edge devices, significantly reducing data transmission by 60% while main-
taining model performance. This approach not only enhanced scalability but also preserved
user privacy, integrating techniques such as differential privacy and homomorphic encryp-
tion to address security concerns. The experimental results validated the effectiveness of
the proposed strategies, showing substantial improvements in predictive accuracy, compu-
tational efficiency, and resource scalability. For example, traffic flow prediction accuracy
improved by 15%, and incident detection precision increased by 10% compared to baseline
models [12].

The findings underscore the transformative potential of ML in enabling smarter and
more efficient traffic management systems. The integration of multimodal data sources
provides a more holistic view of traffic dynamics, facilitating real-time decision-making and
adaptive resource allocation. Such systems hold promise for reducing congestion, lowering
fuel consumption, and minimizing greenhouse gas emissions, ultimately enhancing urban
mobility and sustainability.

Future work will focus on several directions to further advance the proposed method-
ologies. One key area is the extension of the framework to dynamic and complex traffic
scenarios, including those influenced by unpredictable factors such as weather conditions,
road construction, and special events. Real-time implementation of the proposed models
will also be a priority, requiring optimization of computational pipelines and hardware
compatibility for deployment in live urban environments [13]. Additionally, addressing
emerging challenges in multimodal data fusion, such as handling extreme data imbalance
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or incorporating novel data types like pedestrian movement and public transportation
schedules, will be critical for broadening the applicability and robustness of the system
[14,15].

The research presented in this paper provides a significant step toward leveraging
ML and multimodal data fusion for intelligent traffic management. By demonstrating the
practical benefits of integrating drone-based visual data and vehicle telemetry, this work
highlights the potential for advanced analytics and AI-driven solutions to revolutionize ur-
ban transportation systems. The continued development and refinement of these strategies
will be essential for achieving the vision of smarter, more sustainable cities.
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