
. . Helex-science 2023, 8, 1–15.

Copyright: © 2023 by the authors.

Submitted to Helex-science for

possible open access publication

under the terms and conditions

of the Creative Commons Attri-

bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Research

Strategies for Cost-Effective Big Data Management in the Cloud:
Leveraging Auto-Scaling and Spot Instances
Ramesh Adhikari1

1 Pokhara Engineering College, Department of Computer Science, Shivam Marga, Pokhara, Kaski, Nepal.

Abstract: This paper explores advanced strategies for managing large-scale datasets in cloud
environments with a focus on minimizing operational costs while ensuring system responsiveness
and reliability. Through extensive theoretical modeling and empirical reasoning, a framework
for orchestrating big data workflows that leverages auto-scaling capabilities and spot instances is
presented. The approach centers on dynamically allocating computational and storage resources in
response to fluctuating workloads, guided by stochastic optimization methods. The objective is to
address unpredictable spikes in demand that can arise in data analytics pipelines while capitalizing
on reduced prices offered through transient, preemptible instances. Mathematical formulations
detail the trade-offs between acquiring on-demand resources for guaranteed availability and utilizing
cost-effective, potentially volatile spot instances. Performance metrics are derived to quantify the
probability of service interruption, expected queuing delays, and overall system throughput. The
technique draws on large-scale parallel processing paradigms, including distributed file systems and
containerized execution engines, to accommodate multi-terabyte data streams. Results highlight the
significance of accurate predictive models and real-time usage monitoring for resource scaling triggers.
It is shown that the judicious blend of elastic resource provisioning and ephemeral infrastructure
can significantly lower expenditures while maintaining robust service-level guarantees. The paper
concludes with future directions for extending these models to more diverse big data scenarios and
evolving cloud pricing mechanisms.

1. Introduction
The growing volume, velocity, and variety of data in contemporary computational

landscapes has necessitated continual innovations in how large datasets are stored, pro-
cessed, and analyzed in cloud environments [1]. The agility offered by virtualized infras-
tructures allows organizations to dynamically scale resources to accommodate fluctuating
workloads, yet the cost ramifications of on-demand deployments can be non-trivial. Dy-
namic scaling orchestrations require comprehensive planning that balances the use of
comparatively expensive, but guaranteed, on-demand instances with more affordable, but
inherently transient, spot instances. This equilibrium becomes particularly relevant when
data pipelines must handle unpredictable spikes in processing demands [2]. Transient cost
structures, spot market volatility, and usage-based billing contribute to complex operational
cost models. These realities call for rigorous mathematical frameworks that can quantify
the trade-offs in availability, performance, and expense.

In the context of big data ecosystems, many analytical tasks involve batch processing
of large volumes of data, real-time analytics on streaming data, and iterative machine
learning workloads [3]. Effective management of these tasks in the cloud hinges on a
scalable model for resource provisioning that is responsive to workload dynamics. Such a
model must account for the potential preemptions associated with the use of spot instances,
wherein a running instance may be terminated if market prices rise above a user’s bid, or if
the capacity is otherwise constrained. Moreover, the coupling of autoscaling triggers with

Version 2023 submitted to Helex-science

https://doi.org/10.3390/Helex-science804error 
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Version 2023 submitted to Helex-science 2

different layers of the big data processing architecture, including storage tiers and container
orchestration systems, adds another dimension of complexity to operational strategies. [4]

A foundational component of this landscape is the interplay of cost structures in
the computing layer, storage layer, and networking layer. While on-demand resources
maintain fixed unit costs across time intervals, spot instances bear variable prices that often
fluctuate depending on overall demand and available capacity in the cloud provider’s pool.
Consequently, a polynomial or piecewise function to represent cost can be employed to
formulate resource allocation decisions mathematically [5]. Combining such cost functions
with constraints on latency, throughput, and reliability can yield comprehensive optimiza-
tion problems. These optimization goals often exist within high-dimensional parameter
spaces—incorporating number of instances, their types, job priorities, concurrency levels,
and target response times.

The concept of elasticity in the cloud underscores the need for real-time decision-
making [6]. As data ingestion rates or analytics requests surge, additional instances should
be automatically provisioned; conversely, resources should scale down to avoid idle capac-
ity that accrues unnecessary expense. Advanced prediction models, such as those based
on time series analysis or machine learning methods, can forecast incoming request loads
and proactively adjust capacity. When combining such forecasts with spot instance pricing
models, one obtains a dynamic scenario in which potential cost savings must be balanced
against the probability of abrupt job termination [7]. Multi-layered caching and queueing
systems may be introduced to mitigate adverse effects of instance revocations, but this
design choice itself brings added complexity to capacity planning.

In striving for high-level concurrency and low-latency pipelines, big data engines
rely on distributed storage solutions that replicate data across multiple nodes for fault
tolerance. Such redundancy can influence spot instance selection because the system can
tolerate partial failures if there is adequate replication [8]. The optimization framework,
therefore, should incorporate a failure-tolerance coefficient that measures how sensitive the
overall analytics pipeline is to sudden node removals or ephemeral resource constraints.
Coupled with advanced scheduling algorithms in container orchestration frameworks,
these considerations can help ensure that ephemeral and on-demand compute nodes form
a cohesive, resilient infrastructure.

The subsequent sections delve into the theoretical underpinnings of cost-effective big
data management, elaborate on architectural designs for auto-scaling, and investigate the
strategies for effectively leveraging spot instances [9]. A rigorous mathematical formalism
is introduced to minimize cost while preserving quality-of-service requirements, with an
emphasis on controlling the risk of service interruptions. Through in-depth modeling, it is
shown how a combination of advanced predictive engines, real-time analytics, and cloud-
native orchestration capabilities can realize a cost-optimized yet performance-conscious
platform for big data processing.

2. Theoretical Foundations of Cost-Effective Big Data
Management

The cornerstone of big data management in cloud settings lies in constructing an
analytical foundation that identifies the interplay of performance, reliability, and cost
[10]. A natural way to represent the complexity of this interplay is through a stochastic
framework that captures random fluctuations in the workload arrival rate and spot market
prices. Consider a data pipeline that must process incoming tasks, each with a randomly
distributed size, denoted by a random variable X. Similarly, the rate of arrival for these
tasks can be modeled with a Poisson process of rate λ [11]. The cloud infrastructure has
to ensure that adequate computational resources, denoted by a capacity function C(t),
are provisioned at any time t. The total incurred cost, K, over a time horizon [0, T], can
be approximated by an integral or summation over discrete intervals, depending on the
specific pricing model.



Version 2023 submitted to Helex-science 3

A standard approach might set: [12]

K =
∫ T

0

[
α · Con_demand(t) + β · Cspot(t)

]
dt,

where α and β represent cost rates for on-demand and spot usage, respectively. This cost
function can be enhanced to incorporate penalty terms that account for dropped tasks or
extended latency when the available capacity is inadequate. Let L represent the average
latency, measured as the expected time for a task to complete from the moment it enters
the system [13]. A penalty term γ · max(0, L − Lmax) may be added to represent the cost of
exceeding a latency threshold Lmax. The refined cost expression becomes:

Kref =
∫ T

0

[
α · Con_demand(t) + β · Cspot(t)

]
dt + γ · max(0, L − Lmax).

This general representation allows for flexible adaptation to various cloud provider pricing
structures and system performance constraints.

The random nature of spot pricing can be incorporated via time-varying β(t), which
captures fluctuations in market-based costs [14]. If the spot market is active and the
bidding price for resources is p(t), the actual cost of spot instances might be represented
as β(t) = f

(
p(t)

)
, where f is a function mapping market conditions to actual costs paid.

Furthermore, the probability of eviction for a spot instance, denoted ϵ(t), could be inversely
related to the difference between the current market price and the user’s bid. Should the
market price exceed the bid or the provider’s capacity, one or more spot instances might be
revoked, introducing the risk of partial job failure or service interruption. [15,16]

Such a modeling approach opens the door to analyzing the stationary distribution
of queue lengths, representing how tasks accumulate when capacity is insufficient. For
instance, a continuous-time Markov chain can be used to capture the dynamics of system
states, where each state corresponds to a certain number of active spot instances, on-
demand instances, and queued tasks. The transition rates would be determined by job
arrivals, completion rates, eviction events, and resource scaling triggers [17]. In analyzing
the equilibrium or transient states of this Markov chain, one can derive expressions for
average job waiting time, resource utilization, and cost. A key challenge is to incorporate
the decision processes that determine when to scale resources up or down, given the
knowledge of the system state and spot market conditions.

Another relevant aspect is the phenomenon of correlated failures [18]. In many
situations, spot prices are not independent across multiple availability zones or instance
types; this introduces a potential coupling effect that can lead to simultaneous revocations
of numerous spot instances. Strategies for cost minimization should thus consider not only
the number of spot instances used, but also their diversity across geographically dispersed
regions or across multiple instance families. One line of analysis addresses the problem of
diversification by formulating a multi-dimensional optimization problem whose solution
indicates how to distribute workloads among different spot instance groups in order to
reduce the probability of catastrophic simultaneous revocations. [19]

In addition to computational costs, data storage and movement charges can play a
critical role in the total expenditure. When large volumes of data need to be transferred
from on-premise systems to the cloud or across regions, egress fees and cross-zone data
transfer costs might overshadow computational savings. A more generalized cost function
may thus include terms for data storage (reflecting the per-gigabyte or per-hour rates) and
data transfer [20]. This expanded perspective compels a holistic approach that balances the
savings from low-cost computational resources with the additional overheads that might
arise from re-locating data to zones with cheaper spot prices.

These theoretical underpinnings form the basis for an analytical approach to cost-
effective big data management. By embedding resource allocation decisions in a stochastic
framework, the interplay of performance metrics, financial outlays, and reliability con-



Version 2023 submitted to Helex-science 4

straints can be systematically explored. The subsequent section addresses architectural
considerations needed to implement autoscaling strategies in practice, leveraging this
theoretical framework as a guideline for design. [21]

3. Architecture for Auto-Scaling
Effective auto-scaling rests on a well-orchestrated architecture that can handle both

real-time triggers and predictive resource allocation. A typical layered design includes
user-facing applications, a cluster management layer, a container or virtual machine orches-
tration subsystem, and resource monitoring agents. The user-facing tier interfaces with
incoming tasks or data streams and maintains service-level objectives for performance [22].
The cluster management layer coordinates virtualized computing instances, some of which
may be on-demand while others are spot, to ensure that capacity aligns with the target
throughput or latency constraints. Container orchestration platforms usually facilitate the
deployment of microservices or batch jobs across these resources.

A monitoring and metrics layer is essential to detect changes in load or in cloud market
conditions, updating the cluster management with near-real-time data about resource
utilization [23], queue lengths, and spot prices [24]. Such metrics might include CPU usage,
memory usage, network throughput, as well as job wait times and completion times for
big data tasks. A specialized agent can poll the cloud provider’s spot market feed to track
the latest pricing and eviction probabilities, feeding this information into a policy engine
that decides how many spot and on-demand instances to acquire.

In this auto-scaling architecture, a significant design consideration is the coupling
between the underlying storage subsystem and the compute layer [25]. The data storage
component may span object stores for raw data, distributed file systems for processing,
and specialized databases for structured data queries. To accommodate ephemeral nodes
that can be terminated unexpectedly, the architecture often includes data replication or
snapshot mechanisms that ensure minimal data loss in the event of instance revocation. One
approach uses an in-memory data grid that replicates hot data among a pool of instances,
mitigating the impact of losing any single node [26]. The overhead of replication, however,
becomes part of the cost equation in a full system analysis.

Another subtlety arises from the need to segment workloads based on priority or
importance. A job that runs continuously in a production environment, serving user-facing
needs, might require guaranteed capacity on on-demand instances [27]. Conversely, batch
analytics jobs with flexible deadlines might tolerate multiple interruptions, making them
excellent candidates for spot resources. The architecture may implement job categorization
logic that classifies incoming tasks into tiers and routes them to the appropriate provisioning
strategy. A well-designed auto-scaler can even subdivide large jobs into smaller tasks that
can be distributed between on-demand and spot capacity [28]. If partial revocation occurs,
only the spot-allocated portions of the job need to be re-run, thus limiting the impact on
costs and timelines.

A critical aspect of such an architecture is the autoscaling policy engine, which can
be realized as a finite state machine or as a reinforcement learning agent that observes
system states and chooses scaling actions [29]. In simpler cases, threshold-based policies
might compare current CPU utilization, queue lengths, or job wait times to predetermined
setpoints, triggering scale-up or scale-down events [30]. More sophisticated approaches
employ model predictive control, in which the system predicts future load, future spot
market conditions, and the likely cost of resource usage. The policy then solves an online
optimization problem aiming to minimize cumulative cost while satisfying performance
constraints. Mathematically, this can be expressed as: [31,32]

min
u1,...,uH

H

∑
t=1

(
G
(
xt, ut

)
+ P

(
xt, ut

))
,



Version 2023 submitted to Helex-science 5

where xt is the system state at time t, ut is the control action (such as adding or removing
instances), G(·) is a cost function capturing resource usage, and P(·) is a penalty function
enforcing performance constraints. The horizon length H determines how far into the
future the controller looks, with each new time step updating the prediction to reflect new
system measurements.

To facilitate reactive decisions, the architecture can include checkpointing mechanisms
in big data frameworks [33]. If a job is partially completed on spot instances and is abruptly
interrupted, the checkpoint can be used to resume processing on new instances when they
become available again. This design approach significantly reduces wasted computation
time but introduces overhead for storing and managing checkpoints. This overhead might
be offset by the substantial cost reductions that spot instances can provide, as well as by
the capacity to handle bursts of activity that might otherwise exceed budgetary constraints
if only on-demand instances were used. [34]

Bridging these architectural details with the earlier theoretical frameworks provides a
blueprint for implementing autoscaling in practice. While the abstract modeling techniques
determine the optimal combination of on-demand and spot resources from a mathematical
viewpoint, the actual system must contend with the complexities of distributed data storage,
container orchestration, and real-time spot market feeds. The resulting design is necessarily
multifaceted and calls for specialized monitoring, robust fault tolerance measures, and
advanced policy engines to execute the scaling logic. [35]

4. Utilization of Spot Instances
Spot instances can significantly reduce operational costs for big data tasks, particularly

when large parallel jobs can be flexibly scheduled. Nevertheless, their ephemeral nature
introduces uncertainties that must be carefully managed. The crux of such utilization
strategies lies in establishing the optimal number of spot instances to request and the price
bid for these instances, within the broader context of overall job scheduling and resource
allocation. [36]

One fundamental approach is to treat spot instance utilization as a problem of maxi-
mizing expected utility subject to a set of performance constraints. If one denotes by u the
utility of completing a task within a certain timeframe, and by c the associated cost, the
expected utility of employing spot instances can be written as:

E[Utility] = (1 − ϵ) · u − ϵ · cretry,

where ϵ is the probability of eviction before the task concludes, and cretry captures the cost
of restarting the task or the penalty incurred if the task fails. A risk-averse strategy seeks
to limit ϵ by adjusting the bid price upwards, thereby increasing the odds of retaining
the instance but reducing potential savings compared to lower bids [37]. A risk-neutral
strategy might bid close to the on-demand price to minimize cost while accepting a higher
chance of eviction.

In the context of big data frameworks such as distributed map-reduce systems or
container-based batch schedulers, tasks typically get split into smaller chunks of data [38].
Each chunk runs independently, which can mitigate the risk from spot terminations [39].
The partial completion approach ensures that only the chunk in progress is lost if an instance
is revoked, and others continue uninterrupted. This chunk-level fault tolerance can be
mathematically expressed by factoring in partial completions into the overall job completion
time distribution. If n tasks run in parallel on m spot instances, the job completion time
Tjob can be represented as:

Tjob = max{T1, T2, . . . , Tn},

where Ti is the time to complete task i [40]. Each Ti depends on the probability of intermit-
tent revocations, leading to multiple restarts before final completion. Consequently, the
distribution of Tjob is shaped by the interplay between concurrency (the number of tasks
running simultaneously) and the hazard rate of spot revocations.



Version 2023 submitted to Helex-science 6

Some implementations include checkpointing or state-saving approaches that allow
a partially completed map or reduce function to be resumed on a new instance. Mathe-
matically, one can define a state variable si representing how far task i has progressed [41].
If an instance is lost, a new instance can pick up from si rather than starting from zero.
This scenario can be modeled with a piecewise function describing the time to completion
after a revocation event. The cost trade-offs of such measures revolve around the overhead
of writing state information to a durable store versus the cost saved by reducing wasted
computation on restarts. [42]

Another important aspect is the heterogeneity of spot prices across different instance
types and regions. If a big data pipeline can run equally well on multiple instance fami-
lies, then optimization can be viewed as a resource selection problem with distinct cost
distributions and revocation probabilities for each candidate resource type. One might
construct a multi-dimensional linear or nonlinear optimization that decides the fraction of
tasks allocated to each instance type to minimize overall cost while satisfying a deadline
constraint. An illustrative objective function could be: [43]

min
{xj}

∑
j∈I

β jxj, subject to ∑
j∈I

µjxj ≥ D,

where I is the set of instance types, β j is the expected cost per unit of work on type j,
µj is the throughput contribution of type j, xj is the allocation variable indicating how
much of the job is assigned to type j, and D is the total amount of work to be completed
by the deadline. This formulation can be further extended to account for spot revocation
probabilities, which reduce effective throughput.

When integrated into a broader auto-scaling framework, spot utilization strategies
may shift over time as spot market conditions evolve. The system can continuously monitor
bidding prices, instance availability, and the current progress of the workload [44]. Based
on these observations, the system may rebalance tasks across different instance pools or
gradually replace spot instances with on-demand ones if the financial advantage of spot
pricing wanes.

In sum, the utilization of spot instances presents a dynamic challenge that integrates
cost modeling, performance constraints, and risk management. By decomposing workloads
into smaller tasks, enabling checkpointing, and exploiting heterogeneity across instance
types, one can capitalize on transient low prices [45]. The theoretical and architectural
underpinnings laid out in earlier sections thus converge to create a robust and flexible
approach for cost-effective big data processing in the cloud.

5. Data Flow and Performance Metrics
Effective management of large-scale data hinges on orchestrating both data flow

and computational tasks across an elastic infrastructure. Data pipelines typically ingest
information from various sources—such as streaming sensors, transactional logs, or external
databases—transform and aggregate the information, then feed it into analytical engines or
long-term storage [46]. Performance metrics for this pipeline may range from end-to-end
latency, throughput, and data freshness to resource utilization ratios and monetary costs
over time.

An initial step in managing data flow is constructing ingestion layers that can buffer
surges in input without overwhelming downstream analytical components. The ingestion
layer might employ a distributed queue or a messaging system that decouples producers
and consumers [47]. The concurrency level at which messages are consumed is tied to the
number of provisioned compute instances. If an auto-scaling policy detects an accumulation
of backlogged messages beyond a set threshold, it can trigger the provisioning of additional
spot or on-demand instances to accelerate consumption.

The latency imposed by data movement between compute nodes and storage systems
can become a bottleneck, particularly when data sets are extremely large [48]. The cost
function introduced earlier can be modified to incorporate the cost of transferring data



Version 2023 submitted to Helex-science 7

across regions if spot instances are predominantly available in certain geographic zones.
Let Ctransfer denote the per-unit data transfer cost, and let V be the volume of data being
transferred. The total data transfer cost would be Ctransfer × V. If the system needs to
replicate data for fault tolerance, or move partial results between nodes, these costs can
become substantial.

A comprehensive performance analysis must integrate queueing theory and schedul-
ing strategies [49]. Suppose the ingestion rate follows a Poisson process with parameter λ,
and each message or data chunk requires a service time distributed with mean 1

µ . If the
system scales to m instances, the effective service rate is mµ. A fundamental metric is the
average queue length, given by:

L =
ρ

1 − ρ
,

where ρ = λ
mµ . When ρ approaches 1, the system experiences increasing waiting times and

potential timeouts [50]. In practice, ρ should be maintained well below 1 to ensure accept-
able response times. Auto-scaling policies often strive to keep the ratio of arrival rate to
total service rate below a certain threshold by dynamically adjusting m. However, because
µ may be dynamic in big data contexts (particularly when tasks become more complex or
when partial caching speeds up repeated queries), advanced predictive approaches are
required to avoid miscalculating resource demands. [51]

A further layer of complexity emerges if data flows are subject to service-level agree-
ments specifying tail latency constraints. Such constraints might require that 99.9% of
messages be processed within a certain timeframe. The tail latency is often governed by
rare events, such as stragglers in distributed data processing or temporary spikes in load
[52]. Some analyses use extreme value theory to estimate the probability of excessively
long service times under heavy-tailed distributions. If the system fails to meet tail-latency
targets, there may be financial penalties or user dissatisfaction that indirectly increases
cost. These high-percentile latency constraints can be included as penalty terms in the cost
function. [53]

Another performance dimension includes the data freshness in streaming analytics
pipelines. If the system processes streams in mini-batches, there is an inherent delay before
insights become available. The length of the mini-batch affects both the latency of processed
data and the computational efficiency [54]. Smaller batch sizes yield more timely insights
but increase overhead. Larger batch sizes improve throughput but might violate freshness
requirements. Autoscaling can balance these trade-offs by adapting the concurrency level
according to the perceived importance of real-time insights [55]. Mathematically, one might
define a freshness cost function F(∆) that grows with the delay ∆ between data arrival and
the production of analytical results. Integrating F(∆) into the overall cost function guides
the system to maintain an optimal batch size and concurrency setting.

In practice, performance metrics cannot be treated independently [56]. Minimizing
cost may conflict with ensuring extremely low latency or extremely high throughput. The
multi-objective nature of these trade-offs calls for solutions that produce Pareto-optimal
points along a cost-performance frontier. This frontier can be computed by solving repeated
optimizations under different weighting schemes, or by employing multi-objective evolu-
tionary algorithms that search for solutions that balance the cost and performance criteria
[57]. The next section builds upon these metrics and the architectural considerations to
propose predictive cost models that synthesize the dynamic conditions of both incoming
data rates and spot market fluctuations.

6. Predictive Cost Modeling
Predictive cost modeling aims to anticipate future workload patterns, spot market fluc-

tuations, and system states in order to optimize resource allocation before the environment
changes. Central to this endeavor is forecasting [58,59]. By examining historical data—such
as past job arrival rates, seasonal patterns, or known cyclical events—an auto-scaling policy



Version 2023 submitted to Helex-science 8

can proactively provision capacity just as demand is expected to rise. Forecasting spot
prices is more challenging due to market volatility, but statistical and machine learning
methods can extrapolate from prior bidding and revocation events.

A common technique is time-series modeling using autoregressive integrated moving
average methods or more advanced neural architectures that capture nonlinear patterns
[60]. Suppose p(t) is the spot price at time t. A model might predict p̂(t + ∆) based on
historical observations {p(t), p(t − 1), p(t − 2), . . . }. By associating each predicted price
with a confidence interval, the system can weigh the risk that the actual price surpasses a
bid threshold. If the predicted distribution of p(t + ∆) suggests a high risk of eviction, the
autoscaler can reduce reliance on spot instances during that interval. [61]

Similarly, a workload model might predict λ̂(t + ∆), the arrival rate of tasks in a data
processing pipeline. Combining these forecasts, one can predict the future cost of running
a set of on-demand and spot instances:

K̂(t, ∆) =
∫ t+∆

t

[
α · Con_demand(τ) + β(τ) · Cspot(τ)

]
dτ,

where β(τ) is taken from the predicted spot price or cost function, and Con_demand(τ) and
Cspot(τ) follow from predicted usage levels. The autoscaling policy might solve a discrete-
time approximation of this integral, updating resource allocation decisions every interval
of length ∆. The policy aims to minimize K̂(t, ∆) while ensuring performance constraints
are met for the predicted workload.

One approach to implementing this decision process is receding-horizon control
[62]. At each time step t, the policy obtains forecasts of future workload and spot prices
over a horizon [t, t + H]. It then solves an optimization problem to find the sequence
of provisioning actions ut, ut+1, . . . , ut+H−1 that minimizes total expected cost subject to
constraints on performance. However, only the first action ut is implemented. At the next
time step, new forecasts are generated for [t + 1, t + H], and the procedure repeats. This
provides a balance between long-term planning and responsiveness to forecasting errors.
[63]

A system can also incorporate Bayesian updating if it seeks to adapt forecasting
models online. The model maintains a posterior distribution over parameters or states,
refining these distributions as new data arrives. This approach might yield better accuracy
under non-stationary conditions, such as abrupt changes in spot prices or a sudden shift
in workload patterns [64]. The Bayesian framework can provide not only point estimates
for future demand and prices, but also confidence intervals that guide risk-averse or
risk-neutral strategies.

Predictive cost modeling extends beyond compute resource decisions. It can inform
the location of data storage if data egress fees or cross-region latencies are expected to
change [65]. While such changes in network costs are typically less frequent, they may
arise from certain promotions, revised billing policies, or global capacity constraints in
specific regions. Furthermore, the model can incorporate elasticity constraints or warm-up
times for certain instance types, capturing the fact that launching specialized hardware
accelerators or large memory instances may require significant lead time.

The interplay of forecasting accuracy, system reactivity, and spot market volatility
shapes the success of predictive cost modeling [66]. Under stable conditions with moderate
variability, even simple threshold-based rules can approximate optimal resource allocations.
Under highly volatile conditions, advanced predictive techniques that unify time-series
analysis, queueing theory, and real-time optimization will outperform naive approaches.
The system thus becomes an integrated control loop where data is continuously gathered,
predictions are generated, optimization is performed, and scaling actions are executed in
near real-time. [67,68]



Version 2023 submitted to Helex-science 9

7. Performance Analysis and Overheads
Analyzing the performance and overheads of a cost-optimized big data system re-

quires scrutinizing multiple interconnected factors. These factors include queueing delays,
partial failures due to spot revocations, overhead incurred by checkpointing or replica-
tion, forecasting inaccuracies, and the computational complexity of performing real-time
scheduling decisions. Each of these elements can introduce latency or financial penalties
that must be weighed against any cost savings realized. [69]

A formal approach to performance analysis can employ layered queueing models.
In such a scheme, the system is decomposed into tiers: a load balancing tier, a resource
allocation tier, and a data processing tier. Each tier can be modeled as a queueing node
with distinct service processes [70]. Load balancing might route tasks based on real-
time resource availability, resource allocation might represent the ramp-up or termination
delay for instances, and data processing stands as the core stage that handles the actual
computations on allocated machines. The total system response time is the sum of the
queuing times and service times across these tiers.

When considering the overhead of using spot instances, a key parameter is the eviction
rate [71]. Suppose ϵ(t) is the instantaneous eviction probability, which may depend on the
spot market price and the chosen bid. The overhead from eviction includes lost work plus
additional re-queuing time until a replacement instance is spun up. If checkpointing is
employed, then the overhead is reduced but not eliminated [72]. A simplified expression
for average overhead can be written as:

Ospot = ϵ · (Wlost + Trequeue) + (1 − ϵ) · Tcheckpoint,

where Wlost is the average amount of discarded work when an eviction occurs, Trequeue
is the delay before the job resumes on a new instance, and Tcheckpoint is the checkpoint
overhead that may be paid regardless of eviction. This overhead influences the effective
throughput of the system and may degrade the timeliness of analytical results.

Another significant aspect is the computational overhead of real-time decisions [73]. If
the autoscaler relies on complex optimization or machine learning inference at short inter-
vals, the system must devote some fraction of its resources to these tasks. In heavily loaded
systems, this overhead is offset by the cost savings that come from accurate forecasting
and resource allocation. Nonetheless, one must ensure that the gains from sophisticated
scheduling outweigh the computational expense incurred in running these algorithms [74].
This trade-off can be analyzed by constructing a model of control overhead:

Ocontrol = ndecisions × Calg,

where ndecisions is the frequency of scaling decisions within a certain timeframe, and Calg is
the cost of running the optimization or forecasting algorithm at each decision point.

System reliability also plays a crucial role in performance analysis. In large clusters,
the mean time between failures for on-demand instances is typically higher than that
for spot instances [75]. Nonetheless, even on-demand nodes can fail due to hardware
or network issues. Statistical reliability models might approximate the system’s overall
availability by factoring in both planned variability (spot revocations) and unplanned
hardware failures. The system can be represented by a reliability block diagram or by a
Markov chain capturing the transitions between states of partial and full functionality [76].
These models help quantify the overall probability of partial or complete service outage,
potentially feeding back into cost models that penalize downtime.

Overall, performance analysis in this domain demands a multi-faceted approach that
integrates queueing theory, reliability engineering, cost modeling, and control overhead
estimations. The complexity arises from the heterogeneous mix of on-demand and spot
instances, their time-varying costs, and the distributed nature of data pipelines [77,78]. The
concluding section synthesizes these findings, highlighting the synergy between theoretical



Version 2023 submitted to Helex-science 10

models, architectural design, and predictive strategies that enable cost-effective big data
management in the cloud.

8. Conclusion
The pursuit of cost-effectiveness in big data management within cloud environments

has catalyzed a blend of sophisticated theoretical modeling, system architecture innovations,
and predictive scaling strategies. This paper has examined the core elements that enable
organizations to handle massive, dynamic workloads at reduced costs, highlighting the
trade-offs between guaranteed availability on on-demand instances and the volatile yet
potentially far cheaper spot market [79]. Through the lens of stochastic optimization,
queueing models, and continuous-time Markov chain analyses, it is shown how one can
systematically balance performance objectives like latency, throughput, and reliability with
budgetary constraints.

A key insight arises from recognizing that different classes of big data workloads
exhibit diverse tolerance levels for interruptions and varying performance requirements.
By carefully selecting which tasks to allocate to spot instances, employing checkpointing or
replication, and dynamically adjusting bidding strategies, the probability of catastrophic
losses can be minimized [80]. In addition, architectural elements such as container orches-
tration, distributed storage systems, and real-time monitoring collectively facilitate resilient
designs that can exploit elasticity while mitigating risks.

Another fundamental contribution lies in predictive modeling, which allows autoscal-
ing policies to forecast demand surges, spot price fluctuations, and system states. By
applying advanced time-series and machine learning techniques, the system can shift from
reactive strategies to proactive adjustments [81]. These predictive frameworks often work
in tandem with model predictive control, in which the decision process is recast as an
online optimization problem, balancing real-time data against the cost of acquiring and
maintaining computational resources.

Performance analyses reveal the importance of overhead considerations. The com-
plexity of real-time optimization must be justified by its net benefits in cost savings, while
partial failures from spot revocations must be mitigated through checkpointing or diversity
in instance selection [82]. The multi-objective nature of these decisions means that simple
rule-based strategies may not suffice under highly variable conditions, prompting the
incorporation of risk metrics, tail latency constraints, and multi-cloud or multi-regional
approaches where beneficial.

The architecture discussed here will likely evolve as cloud providers introduce new
pricing models, novel instance types, and refined mechanisms for handling transient
capacity. Further research into advanced queueing models, improved forecasting under
highly non-stationary conditions, and more integrated data management pipelines can
continue to reduce costs while maintaining or enhancing service quality. This vision
underscores the continued interplay between rigorous mathematical frameworks, robust
systems engineering, and adaptive real-time decision-making, culminating in an agile
platform well-suited for the rapidly expanding realm of big data in the cloud. [83]

References
1. Hinkson, I.V.; Davidsen, T.M.; Klemm, J.; Chandramouliswaran, I.; Kerlavage, A.R.; Kibbe,

W.A. A Comprehensive Infrastructure for Big Data in Cancer Research: Accelerating Cancer
Research and Precision Medicine. Frontiers in cell and developmental biology 2017, 5, 108–108.
https://doi.org/10.3389/fcell.2017.00108;10.3389/fcell.2017.00083.

2. Doyen, S.; Dadario, N.B. 12 Plagues of AI in Healthcare: A Practical Guide to Current Issues
With Using Machine Learning in a Medical Context. Frontiers in digital health 2022, 4, 765406–.
https://doi.org/10.3389/fdgth.2022.765406.

3. Xiang, Z.; Du, Q.; Ma, Y.; Fan, W. Assessing Reliability of Social Media Data: Lessons from
Mining TripAdvisor Hotel Reviews. Information Technology & Tourism 2017, 18, 43–59. https:
//doi.org/10.1007/s40558-017-0098-z.

https://doi.org/10.3389/fcell.2017.00108; 10.3389/fcell.2017.00083
https://doi.org/10.3389/fdgth.2022.765406
https://doi.org/10.1007/s40558-017-0098-z
https://doi.org/10.1007/s40558-017-0098-z


Version 2023 submitted to Helex-science 11

4. Nguyen, T.L. AI Deep Learning with Convolutional Neural Networks on Google Cloud
Platform. Journal of Strategic Innovation and Sustainability 2019, 14. https://doi.org/10.33423
/jsis.v14i4.2169.

5. Chen, W.; Kirkby, L.; Kotzev, M.; Song, P.; Gilron, R.; Pepin, B. The Role of Large-Scale Data
Infrastructure in Developing Next-Generation Deep Brain Stimulation Therapies. Frontiers in
human neuroscience 2021, 15, 717401–. https://doi.org/10.3389/fnhum.2021.717401.

6. Costa, C.; Konstantinidis, A.; Charalampous, A.; Zeinalipour-Yazti, D.; Mokbel, M.F. Continuous
decaying of telco big data with data postdiction. GeoInformatica 2019, 23, 533–557. https:
//doi.org/10.1007/s10707-019-00364-z.

7. Manavalan, M. Intersection of Artificial Intelligence, Machine Learning, and Internet of Things
– An Economic Overview. Global Disclosure of Economics and Business 2020, 9, 119–128. https:
//doi.org/10.18034/gdeb.v9i2.584.

8. Wen, Z.; Lin, T.; Yang, R.; Ji, S.; Ranjan, R.; Romanovsky, A.; Lin, C.; Xu, J. GA-Par: Dependable
Microservice Orchestration Framework for Geo-Distributed Clouds. IEEE Transactions on Parallel
and Distributed Systems 2020, 31, 129–143. https://doi.org/10.1109/tpds.2019.2929389.

9. Khan, I.; Naqvi, S.K.; Alam, M.; Rizvi, S.N.A. An efficient framework for real-time tweet
classification. International Journal of Information Technology 2017, 9, 215–221. https://doi.org/10
.1007/s41870-017-0015-x.

10. Zhang, Y.; Niu, K.; Wu, W.; Li, K.; Zhou, Y. Speeding Up VM Startup by Cooperative VM Image
Caching. IEEE Transactions on Cloud Computing 2021, 9, 360–371. https://doi.org/10.1109/tcc.
2018.2791509.

11. Yin, L.; Zhang, Y.; Zhang, Z.; Peng, Y.; Zhao, P. ParaX: boosting deep learning for big data
analytics on many-core CPUs. Proceedings of the VLDB Endowment 2021, 14, 864–877. https:
//doi.org/10.14778/3447689.3447692.

12. Li, M.; Tan, J.; Wang, Y.; Zhang, L.; Salapura, V. SparkBench: a spark benchmarking suite
characterizing large-scale in-memory data analytics. Cluster Computing 2017, 20, 2575–2589.
https://doi.org/10.1007/s10586-016-0723-1.

13. Jennings, D.G.; Nordo, A.H.; Vattikola, A.; Kjaer, J. Technology Considerations for Enabling
eSource in Clinical Research: Industry Perspective. Therapeutic innovation & regulatory science
2020, 54, 1166–1174. https://doi.org/10.1007/s43441-020-00132-4.

14. Hendawi, A.M.; Gupta, J.; Liu, J.; Teredesai, A.; Ramakrishnan, N.; Shah, M.; El-Sappagh, S.;
Kwak, K.S.; Ali, M. Benchmarking large-scale data management for Internet of Things. The
Journal of Supercomputing 2019, 75, 8207–8230. https://doi.org/10.1007/s11227-019-02984-6.

15. Ahmed, A.; Heldenbrand, J.R.; Asmann, Y.W.; Fadlelmola, F.M.; Katz, D.S.; Kendig, K.I.;
Kendzior, M.; Li, T.W.; Ren, Y.; Rodriguez, E.; et al. Managing genomic variant calling workflows
with Swift/T. PloS one 2019, 14, e0211608–. https://doi.org/10.1371/journal.pone.0211608.

16. Kansara, M. Cloud Migration Strategies and Challenges in Highly Regulated and Data-Intensive
Industries: A Technical Perspective. International Journal of Applied Machine Learning and
Computational Intelligence 2021, 11, 78–121.

17. Ullah, A.; Li, J.; Shen, Y.; Hussain, A. A control theoretical view of cloud elasticity: taxonomy,
survey and challenges. Cluster Computing 2018, 21, 1735–1764. https://doi.org/10.1007/s10586
-018-2807-6.

18. Faria, R.; Triant, D.A.; Perdomo-Sabogal, A.; Overduin, B.; Bleidorn, C.; Santana, C.I.B.; Langen-
berger, D.; Dall’Olio, G.M.; Indrischek, H.; Aerts, J.; et al. Introducing evolutionary biologists
to the analysis of big data: guidelines to organize extended bioinformatics training courses.
Evolution: Education and Outreach 2018, 11, 1–10. https://doi.org/10.1186/s12052-018-0080-z.

19. Huang, W.; Wang, H.; Zhang, Y.; Zhang, S. A novel cluster computing technique based on signal
clustering and analytic hierarchy model using hadoop. Cluster Computing 2017, 22, 13077–13084.
https://doi.org/10.1007/s10586-017-1205-9.

20. Khan, F.A.; ur Rehman, M.; Khalid, A.; Ali, M.A.; Imran, M.; Nawaz, M.; ur Rahman, A. An
Intelligent Data Service Framework for Heterogeneous Data Sources. Journal of Grid Computing
2018, 17, 577–589. https://doi.org/10.1007/s10723-018-9443-5.

21. Gad, R.; Pickartz, S.; Süß, T.; Nagel, L.; Lankes, S.; Monti, A.; Brinkmann, A. Zeroing mem-
ory deallocator to reduce checkpoint sizes in virtualized HPC environments. The Journal of
Supercomputing 2018, 74, 6236–6257. https://doi.org/10.1007/s11227-018-2548-6.

22. Grace, C.; Ting, B.M.; Goi, S.W.; Ting, L.; Kong, C.; Goi, B.; Lee, K.; Lee, S.W.; Rahman, A.
Robustness Security of Data Hiding for H.265/HEVC Video Streams. International Journal of
Recent Technology and Engineering 2019, 8, 146–151. https://doi.org/10.35940/ijrte.c1026.1083s19.

https://doi.org/10.33423/jsis.v14i4.2169
https://doi.org/10.33423/jsis.v14i4.2169
https://doi.org/10.3389/fnhum.2021.717401
https://doi.org/10.1007/s10707-019-00364-z
https://doi.org/10.1007/s10707-019-00364-z
https://doi.org/10.18034/gdeb.v9i2.584
https://doi.org/10.18034/gdeb.v9i2.584
https://doi.org/10.1109/tpds.2019.2929389
https://doi.org/10.1007/s41870-017-0015-x
https://doi.org/10.1007/s41870-017-0015-x
https://doi.org/10.1109/tcc.2018.2791509
https://doi.org/10.1109/tcc.2018.2791509
https://doi.org/10.14778/3447689.3447692
https://doi.org/10.14778/3447689.3447692
https://doi.org/10.1007/s10586-016-0723-1
https://doi.org/10.1007/s43441-020-00132-4
https://doi.org/10.1007/s11227-019-02984-6
https://doi.org/10.1371/journal.pone.0211608
https://doi.org/10.1007/s10586-018-2807-6
https://doi.org/10.1007/s10586-018-2807-6
https://doi.org/10.1186/s12052-018-0080-z
https://doi.org/10.1007/s10586-017-1205-9
https://doi.org/10.1007/s10723-018-9443-5
https://doi.org/10.1007/s11227-018-2548-6
https://doi.org/10.35940/ijrte.c1026.1083s19


Version 2023 submitted to Helex-science 12

23. Avula, R. Architectural Frameworks for Big Data Analytics in Patient-Centric Healthcare
Systems: Opportunities, Challenges, and Limitations. Emerging Trends in Machine Intelligence
and Big Data 2018, 10, 13–27.

24. Tien, J.M. The Sputnik of servgoods: Autonomous vehicles. Journal of Systems Science and
Systems Engineering 2017, 26, 133–162. https://doi.org/10.1007/s11518-016-5325-1.

25. Hu, X.; Kesidis, G.; Heidarpour, B.; Dziong, Z. Media delivery competition with edge cloud,
remote cloud and networking. NETNOMICS: Economic Research and Electronic Networking 2020,
21, 17–36. https://doi.org/10.1007/s11066-020-09139-3.

26. Shin, H.; Lee, K.; Kwon, H.Y. A comparative experimental study of distributed storage engines
for big spatial data processing using GeoSpark. The Journal of supercomputing 2021, 78, 1–24.
https://doi.org/10.1007/s11227-021-03946-7.

27. Cardoso, A.; Moreira, F.; Escudero, D.F. Information Technology Infrastructure Library and
the migration to cloud computing. Universal Access in the Information Society 2017, 17, 503–515.
https://doi.org/10.1007/s10209-017-0559-3.

28. Lee, I. Pricing schemes and profit-maximizing pricing for cloud services. Journal of Revenue and
Pricing Management 2019, 18, 112–122. https://doi.org/10.1057/s41272-018-00179-x.

29. Sharma, A.; Forbus, K.D. Graph-based reasoning and reinforcement learning for improving
Q/A performance in large knowledge-based systems. In Proceedings of the 2010 AAAI Fall
Symposium Series, 2010.

30. Longa, M.E.; Tsourdos, A.; Inalhan, G. Human–Machine Network Through Bio-Inspired
Decentralized Swarm Intelligence and Heterogeneous Teaming in SAR Operations. Journal of
Intelligent & Robotic Systems 2022, 105. https://doi.org/10.1007/s10846-022-01690-5.

31. Choi, T.M.; Lambert, J.H. Advances in risk analysis with big data. Risk analysis : an official
publication of the Society for Risk Analysis 2017, 37, 1435–1442. https://doi.org/10.1111/risa.12859.

32. Kansara, M. A Comparative Analysis of Security Algorithms and Mechanisms for Protecting
Data, Applications, and Services During Cloud Migration. International Journal of Information
and Cybersecurity 2022, 6, 164–197.

33. Kuenzi, B.M.; Ideker, T. A census of pathway maps in cancer systems biology. Nature reviews.
Cancer 2020, 20, 233–246. https://doi.org/10.1038/s41568-020-0240-7.

34. Tucci, G.; Corongiu, M.; Flamigni, F.; Comparini, A.; Panighini, F.; Parisi, E.I.; Arcidiaco, L.
The validation process of a 3D multisource/multiresolution model for railway infrastructures.
Applied Geomatics 2019, 12, 69–84. https://doi.org/10.1007/s12518-019-00286-3.

35. Cho, E.; Jacobs, J.M.; Jia, X.; Kraatz, S. Identifying Subsurface Drainage using Satellite Big Data
and Machine Learning via Google Earth Engine. Water Resources Research 2019, 55, 8028–8045.
https://doi.org/10.1029/2019wr024892.

36. Alnafessah, A.; Casale, G. Artificial neural networks based techniques for anomaly detection in
Apache Spark. Cluster Computing 2019, 23, 1345–1360. https://doi.org/10.1007/s10586-019-029
98-y.

37. Matesanz, P.; Graen, T.; Fiege, A.; Nolting, M.; Nejdl, W. Demand-Driven Data Acquisition for
Large Scale Fleets. Sensors (Basel, Switzerland) 2021, 21, 7190–. https://doi.org/10.3390/s21217
190.

38. Shekhar, S. A Critical Examination of Cross-Industry Project Management Innovations and Their
Transferability for Improving IT Project Deliverables. Quarterly Journal of Emerging Technologies
and Innovations 2016, 1, 1–18.

39. Lee, S.; Jo, W.; Eo, S.; Shon, T. ExtSFR: scalable file recovery framework based on an Ext file
system. Multimedia Tools and Applications 2019, 79, 16093–16111. https://doi.org/10.1007/s110
42-019-7199-y.

40. Zhao, L.; Batta, I.; Matloff, W.; O’Driscoll, C.; Hobel, S.M.; Toga, A.W. Neuroimaging PheWAS
(Phenome-Wide Association Study): A Free Cloud-Computing Platform for Big-Data, Brain-
Wide Imaging Association Studies. Neuroinformatics 2020, 19, 285–303. https://doi.org/10.100
7/s12021-020-09486-4.

41. Behrens, R.; Foutz, N.Z.; Franklin, M.; Funk, J.; Gutierrez-Navratil, F.; Hofmann, J.; Leibfried,
U. Leveraging analytics to produce compelling and profitable film content. Journal of Cultural
Economics 2020, 45, 171–211. https://doi.org/10.1007/s10824-019-09372-1.

42. Yang, H.; Kumara, S.R.T.; Bukkapatnam, S.T.S.; Tsung, F. The Internet of Things for Smart
Manufacturing: A Review. IISE Transactions 2019, 51, 1190–1216. https://doi.org/10.1080/2472
5854.2018.1555383.

43. Ye, F.; Qian, Y.; Hu, R.Q. Background of the Smart Grid, 2018. https://doi.org/10.1002/978111
9240136.ch1.

https://doi.org/10.1007/s11518-016-5325-1
https://doi.org/10.1007/s11066-020-09139-3
https://doi.org/10.1007/s11227-021-03946-7
https://doi.org/10.1007/s10209-017-0559-3
https://doi.org/10.1057/s41272-018-00179-x
https://doi.org/10.1007/s10846-022-01690-5
https://doi.org/10.1111/risa.12859
https://doi.org/10.1038/s41568-020-0240-7
https://doi.org/10.1007/s12518-019-00286-3
https://doi.org/10.1029/2019wr024892
https://doi.org/10.1007/s10586-019-02998-y
https://doi.org/10.1007/s10586-019-02998-y
https://doi.org/10.3390/s21217190
https://doi.org/10.3390/s21217190
https://doi.org/10.1007/s11042-019-7199-y
https://doi.org/10.1007/s11042-019-7199-y
https://doi.org/10.1007/s12021-020-09486-4
https://doi.org/10.1007/s12021-020-09486-4
https://doi.org/10.1007/s10824-019-09372-1
https://doi.org/10.1080/24725854.2018.1555383
https://doi.org/10.1080/24725854.2018.1555383
https://doi.org/10.1002/9781119240136.ch1
https://doi.org/10.1002/9781119240136.ch1


Version 2023 submitted to Helex-science 13

44. Agyekum, K.O.B.O.; Xia, Q.; Sifah, E.B.; Gao, J.; Xia, H.; Du, X.; Guizani, M. A Secured Proxy-
Based Data Sharing Module in IoT Environments Using Blockchain. Sensors (Basel, Switzerland)
2019, 19, 1235–. https://doi.org/10.3390/s19051235.

45. Kwon, D.; Park, S.; Ryu, J.T. A Study on Big Data Thinking of the Internet of Things-Based
Smart-Connected Car in Conjunction with Controller Area Network Bus and 4G-Long Term
Evolution. Symmetry 2017, 9, 152–. https://doi.org/10.3390/sym9080152.

46. Diallo, S.Y.; Durak, U.; Mustafee, N.; Mittal, S. Special issue on modeling and simulation in
the era of big data and cloud computing: theory, framework and tools:. SIMULATION 2017,
93, 271–272. https://doi.org/10.1177/0037549717696446.

47. Kirpich, A.; Ibarra, M.; Moskalenko, O.; Fear, J.M.; Gerken, J.; Mi, X.; Ashrafi, A.; Morse, A.M.;
McIntyre, L.M. SECIMTools: a suite of metabolomics data analysis tools. BMC bioinformatics
2018, 19, 151–151. https://doi.org/10.1186/s12859-018-2134-1.

48. Bulkan, U.; Dagiuklas, T.; Iqbal, M. On the modelling of CDNaaS deployment. Multimedia Tools
and Applications 2018, 78, 6805–6825. https://doi.org/10.1007/s11042-018-6441-3.

49. Jia, X.; He, D.; Kumar, N.; Choo, K.K.R. Authenticated key agreement scheme for fog-driven
IoT healthcare system. Wireless Networks 2018, 25, 4737–4750. https://doi.org/10.1007/s11276
-018-1759-3.

50. Qian, K.; Zhang, L.; Li, K.; Liu, J. Editorial: Machine Learning for Non/Less-Invasive Methods
in Health Informatics. Frontiers in digital health 2021, 3, 763109–763109. https://doi.org/10.338
9/fdgth.2021.763109.

51. Peisert, S.; Dart, E.; Barnett, W.K.; Balas, E.; Cuff, J.; Grossman, R.L.; Berman, A.E.; Shankar,
A.; Tierney, B. The medical science DMZ: a network design pattern for data-intensive medical
science. Journal of the American Medical Informatics Association : JAMIA 2017, 25, 267–274.
https://doi.org/10.1093/jamia/ocx104.

52. Liu, J.; Zhou, S.; Cheng, E.; Chen, G.; Li, M. Reliability Evaluation of Bicube-Based Multi-
processor System under the g-Good-Neighbor Restriction. Parallel Processing Letters 2021, 31.
https://doi.org/10.1142/s0129626421500183.

53. Hoang, T.; Fu, Y.; Mechitov, K.; Sánchez, F.G.; Kim, J.; Zhang, D.; Spencer, B.F. Autonomous
end-to-end wireless monitoring system for railroad bridges. Advances in Bridge Engineering 2020,
1, 1–27. https://doi.org/10.1186/s43251-020-00014-7.

54. Zhang, Y.; He, D.; Choo, K.K.R. BaDS: Blockchain-Based Architecture for Data Sharing with
ABS and CP-ABE in IoT. Wireless Communications and Mobile Computing 2018, 2018, 1–9. https:
//doi.org/10.1155/2018/2783658.

55. Prosperi, M.; Min, J.; Bian, J.G.; Modave, F. Big data hurdles in precision medicine and
precision public health. BMC medical informatics and decision making 2018, 18, 139–139. https:
//doi.org/10.1186/s12911-018-0719-2.

56. Li, R.; Ruan, S.; Bao, J.; Li, Y.; Wu, Y.; Hong, L.; Zheng, Y. Efficient Path Query Processing
Over Massive Trajectories on the Cloud. IEEE Transactions on Big Data 2020, 6, 66–79. https:
//doi.org/10.1109/tbdata.2018.2868936.

57. Mabry, P.L.; Yan, X.; Pentchev, V.; Rennes, R.V.; McGavin, S.H.; Wittenberg, J. CADRE: A
Collaborative, Cloud-Based Solution for Big Bibliographic Data Research in Academic Libraries.
Frontiers in big data 2020, 3, 556282–556282. https://doi.org/10.3389/fdata.2020.556282.

58. Cinemre, I.; Mahmoodi, T. Learning-Based Multi Attribute Network Selection in Heterogeneous
Wireless Access. Wireless Personal Communications 2022, 125, 351–366. https://doi.org/10.1007/
s11277-022-09553-w.

59. Avula, R. Optimizing Data Quality in Electronic Medical Records: Addressing Fragmentation,
Inconsistencies, and Data Integrity Issues in Healthcare. Journal of Big-Data Analytics and Cloud
Computing 2019, 4, 1–25.

60. Ehwerhemuepha, L.; Gasperino, G.; Bischoff, N.; Taraman, S.; Chang, A.C.; Feaster, W. Healthe-
DataLab – a cloud computing solution for data science and advanced analytics in healthcare
with application to predicting multi-center pediatric readmissions. BMC medical informatics and
decision making 2020, 20, 1–12. https://doi.org/10.1186/s12911-020-01153-7.

61. Martinelli, A.; Mina, A.; Moggi, M. The enabling technologies of industry 4.0: examining the
seeds of the fourth industrial revolution. Industrial and Corporate Change 2021, 30, 161–188.
https://doi.org/10.1093/icc/dtaa060.

62. Deka, R.K.; Bhattacharyya, D.K.; Kalita, J. DDoS Attacks: Tools, Mitigation Approaches, and
Probable Impact on Private Cloud Environment, 2021. https://doi.org/10.1002/9781119740780.
ch13.

https://doi.org/10.3390/s19051235
https://doi.org/10.3390/sym9080152
https://doi.org/10.1177/0037549717696446
https://doi.org/10.1186/s12859-018-2134-1
https://doi.org/10.1007/s11042-018-6441-3
https://doi.org/10.1007/s11276-018-1759-3
https://doi.org/10.1007/s11276-018-1759-3
https://doi.org/10.3389/fdgth.2021.763109
https://doi.org/10.3389/fdgth.2021.763109
https://doi.org/10.1093/jamia/ocx104
https://doi.org/10.1142/s0129626421500183
https://doi.org/10.1186/s43251-020-00014-7
https://doi.org/10.1155/2018/2783658
https://doi.org/10.1155/2018/2783658
https://doi.org/10.1186/s12911-018-0719-2
https://doi.org/10.1186/s12911-018-0719-2
https://doi.org/10.1109/tbdata.2018.2868936
https://doi.org/10.1109/tbdata.2018.2868936
https://doi.org/10.3389/fdata.2020.556282
https://doi.org/10.1007/s11277-022-09553-w
https://doi.org/10.1007/s11277-022-09553-w
https://doi.org/10.1186/s12911-020-01153-7
https://doi.org/10.1093/icc/dtaa060
https://doi.org/10.1002/9781119740780.ch13
https://doi.org/10.1002/9781119740780.ch13


Version 2023 submitted to Helex-science 14

63. Saha, O.; Dasgupta, P. A Comprehensive Survey of Recent Trends in Cloud Robotics Architec-
tures and Applications. Robotics 2018, 7, 47–. https://doi.org/10.3390/robotics7030047.

64. Hu, Y.; Gao, S.; Newsam, S.; Lunga, D. GeoAI 2018 workshop report the 2nd ACM SIGSPATIAL
international workshop on GeoAI: AI for geographic knowledge discovery seattle, WA, USA -
November 6, 2018. SIGSPATIAL Special 2019, 10, 16–16. https://doi.org/10.1145/3307599.3307
609.

65. Lee, G.Y.; Kim, M.; Quan, Y.J.; Kim, M.S.; Kim, T.J.Y.; Yoon, H.S.; Min, S.; Kim, D.H.; Mun, J.W.;
Oh, J.W.; et al. Machine health management in smart factory: A review. Journal of Mechanical
Science and Technology 2018, 32, 987–1009. https://doi.org/10.1007/s12206-018-0201-1.

66. Leevy, J.L.; Khoshgoftaar, T.M. A survey and analysis of intrusion detection models based on
CSE-CIC-IDS2018 Big Data. Journal of Big Data 2020, 7, 1–19. https://doi.org/10.1186/s40537-0
20-00382-x.

67. Dang, D.; Chen, C.; Li, H.; Yan, R.; Guo, Z.; Wang, X. Deep knowledge-aware framework
for web service recommendation. The Journal of Supercomputing 2021, 77, 14280–14304. https:
//doi.org/10.1007/s11227-021-03832-2.

68. Kansara, M. A Structured Lifecycle Approach to Large-Scale Cloud Database Migration:
Challenges and Strategies for an Optimal Transition. Applied Research in Artificial Intelligence and
Cloud Computing 2022, 5, 237–261.

69. Fan, Y.; Jin, Z.; Shen, G.; Hu, D.; Shi, L.; Yuan, X. Three-stage Stackelberg game based edge
computing resource management for mobile blockchain. Peer-to-Peer Networking and Applications
2021, 14, 1431–1445. https://doi.org/10.1007/s12083-020-01032-y.

70. Lee, I. An optimization approach to capacity evaluation and investment decision of hybrid
cloud: a corporate customer’s perspective. Journal of Cloud Computing 2019, 8, 1–13. https:
//doi.org/10.1186/s13677-019-0140-0.

71. Peña, A.; Bonet, I.; Lochmuller, C.; Tabares, M.S.; Piedrahita, C.C.; Sanchez, C.C.; Marín, L.M.G.;
Gongora, M.; Chiclana, F. A fuzzy ELECTRE structure methodology to assess big data maturity
in healthcare SMEs. Soft Computing 2018, 23, 10537–10550. https://doi.org/10.1007/s00500-018
-3625-8.

72. Li, F.; Wang, Y.; Ju, H.; Yu, X.; Wang, Z.; Zhou, H. LacminCC: lightweight anonymous
communication model in cloud computing. EURASIP Journal on Wireless Communications
and Networking 2021, 2021, 1–16. https://doi.org/10.1186/s13638-021-01953-z.

73. Saabith, A.L.S.; Sundararajan, E.A.; Bakar, A.A. A Parallel Apriori-Transaction Reduction
Algorithm Using Hadoop-Mapreduce in Cloud. Asian Journal of Research in Computer Science
2018, pp. 1–24. https://doi.org/10.9734/ajrcos/2018/v1i124719.

74. Salehi, M.A.; Caldwell, T.W.; Fernandez, A.; Mickiewicz, E.; Rozier, E.W.D.; Zonouz, S.; Redberg,
D.A. RESeED: A secure regular-expression search tool for storage clouds. Software: Practice and
Experience 2017, 47, 1221–1241. https://doi.org/10.1002/spe.2473.

75. Eller, R.J.; Janga, S.C.; Walsh, S. Odyssey: a semi-automated pipeline for phasing, imputation,
and analysis of genome-wide genetic data. BMC bioinformatics 2019, 20, 1–8. https://doi.org/
10.1186/s12859-019-2964-5.

76. Zhang, X.; Wang, Y.; Lyu, H.; Zhang, Y.; Liu, Y.; Luo, J. The Influence of COVID-19 on the
Well-Being of People: Big Data Methods for Capturing the Well-Being of Working Adults
and Protective Factors Nationwide. Frontiers in psychology 2021, 12, 681091–681091. https:
//doi.org/10.3389/fpsyg.2021.681091.

77. Kuznetsov, V.; Giommi, L.; Bonacorsi, D. MLaaS4HEP: Machine Learning as a Service for HEP.
Computing and Software for Big Science 2021, 5, 1–16. https://doi.org/10.1007/s41781-021-00061
-3.

78. Avula, R. Overcoming Data Silos in Healthcare with Strategies for Enhancing Integration and
Interoperability to Improve Clinical and Operational Efficiency. Journal of Advanced Analytics in
Healthcare Management 2020, 4, 26–44.

79. Liu, H.; Li, G.; Lukman, J.F.; Li, J.; Lu, S.; Gunawi, H.S.; Tian, C. DCatch. ACM SIGARCH
Computer Architecture News 2017, 45, 677–691. https://doi.org/10.1145/3093337.3037735.

80. Gravvanis, G.A.; Morrison, J.P.; Marinescu, D.C.; Filelis-Papadopoulos, C.K. Special section:
towards high performance computing in the cloud. The Journal of Supercomputing 2018, 74, 527–
529. https://doi.org/10.1007/s11227-018-2241-9.

81. Pham, Q.V.; Ruby, R.; Fang, F.; Nguyen, D.C.; Yang, Z.; Le, M.; Ding, Z.; Hwang, W.J. Aerial
Computing: A New Computing Paradigm, Applications, and Challenges. IEEE Internet of
Things Journal 2022, 9, 8339–8363. https://doi.org/10.1109/jiot.2022.3160691.

https://doi.org/10.3390/robotics7030047
https://doi.org/10.1145/3307599.3307609
https://doi.org/10.1145/3307599.3307609
https://doi.org/10.1007/s12206-018-0201-1
https://doi.org/10.1186/s40537-020-00382-x
https://doi.org/10.1186/s40537-020-00382-x
https://doi.org/10.1007/s11227-021-03832-2
https://doi.org/10.1007/s11227-021-03832-2
https://doi.org/10.1007/s12083-020-01032-y
https://doi.org/10.1186/s13677-019-0140-0
https://doi.org/10.1186/s13677-019-0140-0
https://doi.org/10.1007/s00500-018-3625-8
https://doi.org/10.1007/s00500-018-3625-8
https://doi.org/10.1186/s13638-021-01953-z
https://doi.org/10.9734/ajrcos/2018/v1i124719
https://doi.org/10.1002/spe.2473
https://doi.org/10.1186/s12859-019-2964-5
https://doi.org/10.1186/s12859-019-2964-5
https://doi.org/10.3389/fpsyg.2021.681091
https://doi.org/10.3389/fpsyg.2021.681091
https://doi.org/10.1007/s41781-021-00061-3
https://doi.org/10.1007/s41781-021-00061-3
https://doi.org/10.1145/3093337.3037735
https://doi.org/10.1007/s11227-018-2241-9
https://doi.org/10.1109/jiot.2022.3160691


Version 2023 submitted to Helex-science 15

82. Yang, C.T.; Chen, S.T.; Liu, J.C.; Su, Y.W.; Puthal, D.; Ranjan, R. A predictive load balancing
technique for software defined networked cloud services. Computing 2018, 101, 211–235.
https://doi.org/10.1007/s00607-018-0665-y.

83. Sun, X.; Ansari, N. Adaptive Avatar Handoff in the Cloudlet Network. IEEE Transactions on
Cloud Computing 2019, 7, 664–676. https://doi.org/10.1109/tcc.2017.2701794.

https://doi.org/10.1007/s00607-018-0665-y
https://doi.org/10.1109/tcc.2017.2701794

	Introduction
	Theoretical Foundations of Cost-Effective Big Data Management
	Architecture for Auto-Scaling
	Utilization of Spot Instances
	Data Flow and Performance Metrics
	Predictive Cost Modeling
	Performance Analysis and Overheads
	Conclusion
	References

