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Abstract: Commonsense knowledge bases (CSKBs) represent real-world facts through entities and
relationships, yet their often unstructured or semi-structured nature impedes efficient scalability and
reasoning. This paper proposes a novel graph neural network (GNN)-based framework designed to
autonomously organize large-scale CSKBs into semantically coherent, machine-interpretable graphs.
The core architecture incorporates heterogeneous graph convolution operators to simultaneously
capture multi-relational dependencies and preserve local topological features. In tandem, a hierar-
chical attention mechanism adjusts edge weights dynamically based on node attribute similarity
and global graph connectivity, leading to efficient discovery of sparse substructures. To mitigate the
combinatorial explosion of relational paths, we introduce a constrained optimization objective that
minimizes edge reconstruction loss while maximizing deductive closure through implicit Horn clause
satisfiability. Empirical evaluations on ConceptNet and ATOMIC confirm notable improvements in
multiple metrics: a 23.7% boost in edge prediction accuracy over competitive graph autoencoder
baselines and a semantic consistency score of 0.892 on held-out triples, outperforming transformer-
based knowledge base completion methods by 15.2%. Qualitative structural analyses reveal emergent
hypernymy and causality hierarchies without explicit ontological supervision, highlighting the
robustness of the learned graph representations. Our results emphasize that unifying geometric
embeddings with symbolic reasoning constraints significantly enhances the structuring of noisy
commonsense assertions, thus promoting scalable, high-fidelity CSKBs.

1. Introduction
Commonsense knowledge bases (CSKBs) serve as repositories of everyday facts and in-

ferences essential for numerous artificial intelligence (AI) tasks, spanning natural language
understanding, robotic perception, and automated reasoning. These repositories typically
encompass millions of loosely structured assertions, each encapsulating a plausible real-
world relation, such as "dog hasA tail" or "rain causes wet ground." The construction of
CSKBs often integrates multiple methodologies, including crowdsourcing, automated text
mining, and expert annotation, leading to a mixture of redundancies, noise, and partial
inconsistencies [1][2] [3]. A significant challenge in maintaining and utilizing CSKBs arises
from their inherent relational polysemy, wherein a single relation type, such as "relatedTo"
in ConceptNet, can signify vastly different semantic connections. Additionally, entity oc-
currences within CSKBs often adhere to long-tailed distributions, wherein a small subset of
concepts appears frequently, while a vast majority remain sparsely represented. Traditional
structuring techniques, including manually curated taxonomies and embedding-based
alignment approaches, encounter persistent obstacles in addressing relational heterogeneity
and ensuring deductive completeness, especially as CSKBs expand in scale [4] [5] [6].

Recent advancements in graph-based learning methodologies, particularly Graph
Neural Networks (GNNs), provide a promising avenue for leveraging CSKBs’ rich re-
lational structures. GNNs operate by iteratively aggregating node information through
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message-passing mechanisms, thereby capturing both topological dependencies and node-
specific features. However, conventional GNN architectures, such as Graph Convolutional
Networks (GCN) and Graph Attention Networks (GAT), are primarily designed for rel-
atively homogeneous graphs, where node interactions exhibit a degree of consistency in
their semantic interpretations. This assumption does not hold in CSKBs, where relations
like "causes" fundamentally differ in nature from relations like "desires," "motivates," or
"isA." Knowledge graph-oriented adaptations, such as Relational Graph Convolutional
Networks (RGCN), introduce mechanisms to handle multi-relation scenarios by employing
relation-specific transformation matrices. Yet, these models often impose rigid schema
constraints that restrict their ability to generalize to new or ambiguous relations, limiting
their adaptability in evolving CSKB landscapes [7] [8] [9,10].

A key challenge in integrating GNNs with CSKBs lies in the trade-off between struc-
tural flexibility and semantic precision. While conventional knowledge graphs (KGs)
benefit from well-defined ontological schemas, CSKBs embody a broader and more loosely
defined semantic space. This discrepancy necessitates more expressive modeling tech-
niques capable of dynamically adapting to relation-specific variations. One potential
approach involves the incorporation of heterogeneous graph neural networks (HGNNs),
which explicitly account for diverse node and edge types by introducing type-aware ag-
gregation mechanisms. Additionally, attention-based models, such as Relational Graph
Attention Networks (RGAT), can selectively weigh relational influences, thereby mitigating
the oversmoothing effects commonly observed in deep GNN architectures. The ability to
differentiate between relation-specific influences is particularly crucial in CSKBs, where
high-connectivity nodes often serve as semantic hubs that bridge disparate conceptual
clusters.

Furthermore, representation learning strategies tailored to CSKBs must address spar-
sity and long-tailed distributions. Many real-world CSKBs exhibit a power-law distribution
in entity occurrences, with a small subset of frequently referenced concepts dominating the
knowledge space while a vast majority of entities remain underrepresented. Standard node
embedding techniques struggle to provide meaningful representations for such infrequent
entities due to limited neighborhood information. One potential remedy involves the
incorporation of meta-learning strategies, wherein models are trained to generalize from
a few-shot learning paradigm, effectively enhancing their capacity to infer relations for
low-resource entities. Additionally, contrastive learning frameworks, which maximize
representation distinctions between semantically disparate entities while reinforcing simi-
larities within conceptually related groups, have demonstrated potential in mitigating the
adverse effects of data sparsity [11] [12] [13] [14].

Beyond structural and representation challenges, reasoning over CSKBs introduces
another layer of complexity. While symbolic reasoning approaches, such as rule-based
inference engines, offer high interpretability, they often suffer from scalability constraints
and limited generalization to novel assertions. Conversely, embedding-based reasoning
frameworks leverage vectorized representations to infer implicit relationships; however,
they typically lack transparency in their decision-making processes. Hybrid reasoning
models, which integrate symbolic logic with neural embeddings, represent a promising
direction for enhancing both interpretability and adaptability. For instance, neuro-symbolic
models that incorporate differentiable rule induction mechanisms can dynamically infer
logical relationships while preserving explainability. Such models hold particular promise
for downstream applications, including commonsense question answering, contextual
reasoning in dialogue systems, and autonomous decision-making in robotics [15] [16]
[17,18].

The evaluation of CSKB structuring methodologies necessitates robust benchmarking
frameworks that account for both structural integrity and semantic coherence. Traditional
knowledge graph benchmarks, such as link prediction and triplet classification, provide
useful but insufficient measures of performance due to their focus on syntactic rather than
conceptual correctness. More comprehensive evaluation paradigms should incorporate



Version 2021 submitted to Helex-science 3

multi-faceted assessments, including logical consistency checks, human validation studies,
and downstream task performance metrics. Furthermore, introducing adversarial pertur-
bations in benchmark datasets can help assess the robustness of CSKB-enhanced models
against erroneous or misleading assertions [19] [20].

Method Strengths Weaknesses
Manual Taxonomies High precision, structured

knowledge
Scalability limitations,
labor-intensive

Embedding-Based Align-
ment

Efficient for large-scale in-
tegration

Lacks interpretability,
struggles with polysemy

Graph Neural Networks
(GNNs)

Captures relational depen-
dencies

Sensitive to sparsity, over-
smoothing risks

Relational Graph Neural
Networks (RGCNs)

Handles multi-relation
scenarios

Rigid schema constraints,
limited adaptability

Hybrid Neuro-Symbolic
Models

Balances interpretability
and adaptability

Computationally com-
plex, requires fine-tuning

Table 1. Comparison of Different Approaches for Structuring Commonsense Knowledge Bases

Emerging techniques in self-supervised learning (SSL) further augment the capabili-
ties of GNN-based CSKB models. Self-supervised pretraining strategies, such as masked
concept prediction and contrastive graph learning, enable models to develop more general-
ized representations without requiring extensive labeled data. Additionally, reinforcement
learning (RL) paradigms have been explored for optimizing knowledge graph traversal,
wherein an RL agent learns optimal paths for information retrieval based on reward mech-
anisms. These advancements suggest promising directions for enhancing the scalability
and effectiveness of CSKB structuring methodologies [21] [22] [23] [24]

Simultaneously, commonsense reasoning frequently involves chaining multiple re-
lational steps: for instance, inferring that “person X wants to eat” might lead to “per-
son X goes to a restaurant,” which in turn implies “person X might pay the bill.” Such
transitive and causal links can explode combinatorially if the structuring algorithm indis-
criminately includes all plausible connections. To handle this complexity, deductive logic
constraints—represented by Horn clauses or other forms of logical implication—can guide
the model to focus on consistent, essential connections [25] [26] [27]. .

In this paper, we propose a unified framework that combines geometric deep learning
and symbolic reasoning to address these challenges. On the geometric side, we employ an
edge-conditioned GNN that jointly models node embeddings and relation-specific trans-
formations to capture how different relations affect neighbor aggregation. We enhance
expressivity and pruning capability through a hierarchical attention mechanism that dy-
namically modulates edge importance. On the symbolic side, we introduce a deductive
regularization term that encourages the discovered edges to satisfy common Horn-clause
constraints inherent in many commonsense assertions (e.g., “if living being is dog and
dog is an animal, then living being is animal”). By integrating these components, our
framework achieves scalable structuring of massive CSKBs, ensuring both representational
fidelity (i.e., reconstructing edges accurately) and robust deductive closures (i.e., generating
missing but logically implied edges).

Crucially, our model also adapts to hierarchical and associative relations by learning
curvature parameters in a hyperbolic or Lorentzian manifold. This accommodates the often
tree-like nature of “hypernymy” or “causes” relations, which display hierarchical layering
in conceptual space. Through this dynamic, we avoid artificially constraining all relations
to a purely Euclidean manifold, where hierarchical distance measures might be suboptimal
[28] [29].

To validate the proposed method, we conduct extensive experiments on two large-scale
commonsense resources: ConceptNet 5.7 and ATOMIC 2020. Our architecture demon-
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strates marked improvements over state-of-the-art graph embedding and knowledge graph
completion baselines, including TransE, ComplEx, and RGCN variants. Metrics such as
edge prediction, semantic consistency of newly inferred edges, and deductive closure rates
all favor our approach. Furthermore, an ablation study reveals the critical roles of dynamic
edge weighting and symbolic regularization; removing either component significantly re-
duces performance. A deeper inspection of the learned graphs shows emergent structured
hierarchies that resemble manually created taxonomies, despite the complete absence of
explicit hierarchical supervision [30,31] [32] [33].

In the sections that follow, we provide a comprehensive examination of the proposed
model. We begin by formalizing the structuring task, detailing the notations and constraints
we impose on the CSKB. Next, we describe our hybrid neural architecture and its training
objective, which unifies geometric embedding, attention-based pruning, and deductive
logic constraints. We then present experimental protocols, datasets, and thorough quan-
titative and qualitative evaluations. Subsequently, we delve into theoretical aspects of
model expressiveness, relating it to the Weisfeiler-Lehman test for graph isomorphism and
discussing the implications of hyperbolic geometry for hierarchical data. We conclude with
a summary of our findings, possible extensions to temporal or modality-rich commonsense
knowledge, and considerations for synergy with large-scale language models [34] [35] [36].

2. Methodology
2.1. Problem Formulation and Structured Representation

Let G = (V , E ,R) denote a labeled multigraph representing the commonsense knowl-
edge base. Each node vi ∈ V corresponds to an entity or concept (e.g., “dog,” “rain,”
“happy”), and each edge er

ij ∈ E represents a relational assertion of type r ∈ R between
nodes vi and vj. These relations may include “isA,” “hasA,” “causes,” “desires,” or any
other label found in the CSKB. Additionally, nodes often carry feature vectors xi ∈ Rd, either
derived from textual descriptions, word embeddings, or specialized concept embeddings.
We aggregate these into X ∈ R|V|×d.

A key challenge is that E can be extremely large, uncurated, and noisy. Edges are often
extracted from multiple sources with varying confidence levels. Formally, each edge er

ij
includes a confidence score wr

ij ∈ [0, 1]. The goal of “structuring” the CSKB is to map G
to a refined graph G ′ = (V ′, E ′), where V ′ ⊆ V and E ′ reflects a pruned and augmented
set of edges. This refined graph should maintain high accuracy in reconstructing genuine
relations while also supporting deductive inference—i.e., if a fact can logically be derived
from existing edges, it should appear (or be inferrable) in G ′. More formally:

1. **Completeness**: For any triple (vi, r, vj) derivable via a set of Horn clauses on G,
there should exist a corresponding edge er

ij ∈ E ′ (or at least be deducible from a path in E ′).
2. **Consistency**: Mutually exclusive relations—such as “isA cat” and “isA dog” if the
domain logic forbids intersection—should not both appear on the same node pair without
justification. 3. **Conciseness**: Redundant edges that can be inferred transitively (e.g., “X
isA mammal” if “X isA dog” and “dog isA mammal” are already present) should ideally
be pruned or assigned minimal weight, ensuring the graph remains interpretable and less
cluttered.

2.2. Hybrid Graph Neural Network Architecture

Our proposed approach incorporates two parallel streams of message passing: an edge-
conditioned convolution pathway and an attention-based mechanism. The overarching
intuition is that edges of different types can exhibit substantially different aggregation
patterns (e.g., “similarTo” might average neighbor representations, while “isA” might
shift embeddings in a more hierarchical fashion), and these variations must be captured
explicitly. Meanwhile, we also need a flexible attention mechanism that can dynamically
reweight or remove edges that are deemed uninformative or spurious [37] [38] [39].
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Edge-Conditioned Convolution Stream

For each node vi, let h(l)
i be its embedding at layer l. We define a relation-specific

transformation for each r ∈ R, with learnable parameters W(l)
r , b(l)

r . The edge-conditioned
update is:

h(l+1)
i = σ

(
∑

r∈R
∑

j∈N r
i

1
|N r

i |
(
W(l)

r h(l)
j + b(l)

r
))

,

where N r
i is the set of neighbors connected to vi by edges of type r. This formulation

is reminiscent of relational GCNs but extends them by allowing a more granular weighting
structure (discussed further in the next subsection). The activation σ can be ReLU or
another nonlinear function.

Attention-Based Convolution Stream

In parallel, we compute an attention-based update akin to GAT:

αij = softmaxj∈Ni

(
LeakyReLU

(
aT [Wh(l)

i ∥Wh(l)
j ]
))

,

h(l+1)
i = σ

(
∑

j∈Ni

αij W h(l)
j

)
,

where Ni can include all neighbors or a relation-specific subset. The key difference
here is that αij is learned adaptively, allowing the model to focus on the most salient
neighbors.

Fusion and Gating

We fuse the outputs of these two parallel streams at each layer using a gated mixture
parameter β:

H(l+1) = β ·H(l+1)
edge + (1− β) ·H(l+1)

attn ,

where H(l+1) is the final embedding matrix at layer l + 1, H(l+1)
edge represents the edge-

conditioned convolution outputs, and H(l+1)
attn represents the attention-based outputs. This

gating allows the network to balance the specialized relation-based transformations with
the more flexible attention mechanisms.

Edge Scoring and Relation-Specific Matrices

After the final GNN layer, we obtain hi for each node vi. We then predict whether an
edge er

ij should exist (or remain) using a relation-specific bilinear scoring function:

ϕ(er
ij) = sigmoid

(
hT

i Mr hj + cr

)
,

where Mr ∈ Rd×d and cr ∈ R are learnable parameters. A high ϕ(er
ij) indicates that

the relation r between vi and vj is likely valid. This score thus drives the reconstruction of
E and simultaneously supports the filtering out of low-confidence edges.

2.3. Dynamic Edge Weighting via Curvature Learning

To handle the inherent hierarchy found in many commonsense relations—such as
hypernymy or causality—we allow the model to map nodes into a curved manifold,
typically hyperbolic or Lorentzian space, as this geometry often better captures tree-like
structures. Let zi ∈ Dd represent the node embedding in a hyperbolic space of dimension
d. The primary motivation behind employing such non-Euclidean spaces is their ability
to embed hierarchical structures with lower distortion compared to traditional Euclidean
embeddings. Specifically, hyperbolic spaces provide exponentially increasing volumes,
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allowing them to naturally fit tree-like structures with minimal loss. This property makes
them particularly well-suited for knowledge graphs, taxonomies, and other relational data
that exhibit strong hierarchical properties. In this setting, we compute an adaptive weight:

wr
ij = σ

(
γ · dL(zi, zj) + δr

)
,

where dL(·, ·) denotes Lorentzian distance, γ is a learned global curvature parameter,
and δr is a relation-specific shift. Intuitively, if two nodes are “close” in hyperbolic space,
they should be connected more tightly in the final structure. The Lorentzian distance is
defined as:

dL(zi, zj) = arcosh
(
−⟨zi, zj⟩L

)
,

where ⟨zi, zj⟩L represents the Minkowski inner product in Lorentzian space. This
formulation enables hierarchical relationships to be captured naturally, as distances grow
logarithmically with depth in the hierarchy.

Relations implying hierarchy (e.g., “isA,” “partOf,” “causes”) often exhibit a char-
acteristic geometry with one side more “central” than the other. That is, the hyperbolic
representation places more general concepts near the origin, while more specific instances
are positioned toward the periphery. This ordering ensures that child nodes inherit proper-
ties from their parents while maintaining appropriate distances for effective generalization.
The dynamic weighting introduced via wr

ij helps the GNN layers scale properly in highly
hierarchical or tree-like subgraphs, while still allowing more associative relations (e.g.,
“relatedTo”) to remain relatively flat. The ability to adaptively learn curvature via γ is
crucial, as different knowledge graph domains exhibit varying degrees of hierarchy, and a
fixed curvature assumption may not generalize well across tasks.

Incorporation into the GNN

We integrate wr
ij by reinterpreting the neighbor aggregation steps. Specifically, the

sums over neighbors become:

h(l+1)
i = σ

(
∑

r∈R
∑

j∈N r
i

wr
ij

(
W(l)

r h(l)
j + b(l)

r

))
,

instead of the uniform 1
|N r

i |
. This approach more finely controls how strongly each

neighbor contributes to the updated embedding, based on both confidence scores and
geometric proximity in the learned manifold. The learned weight wr

ij introduces anisotropic
influences, where nodes closer in hyperbolic space contribute more significantly to the
updated representation. This property aligns well with real-world relational graphs, where
certain edges (e.g., hypernyms) should be weighted more heavily than others.

Furthermore, the parameterization of δr allows relation-specific tuning of influence.
For example, in a biological taxonomy, the relation “isA” may have a different optimal shift
than a looser semantic relationship such as “relatedTo.” The ability to distinguish these
cases dynamically makes the approach flexible across different domains.

In practical terms, the use of hyperbolic space in message passing networks has
shown improvements in representation quality, especially in scenarios where hierarchical
information is crucial. The use of non-Euclidean aggregation aligns naturally with real-
world graphs, particularly knowledge bases that exhibit ontological structure. Theoretical
guarantees from Riemannian geometry suggest that distances in hyperbolic space maintain
meaningful separation, which translates into improved clustering of conceptually similar
nodes.

Additionally, the learned curvature parameter γ plays a significant role in determining
how aggressively the model distinguishes hierarchical levels. A large negative γ corre-
sponds to extreme hierarchical separation, whereas a smaller magnitude implies a flatter
embedding structure. This flexibility allows adaptation across different datasets, ranging
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Relation Type Curvature Ten-
dency

Weighting Impact Example

Hypernymy ("isA") Strongly Nega-
tive

High Influence Animal→Mammal

Part-Whole ("partOf") Moderately
Negative

Medium Influence Wheel→ Car

Causal ("causes") Variable Context-Dependent Fire→ Smoke
Associative ("relat-
edTo")

Near Zero Low Influence Coffee→ Caffeine

Table 2. Impact of Relation Type on Curvature and Weighting

from deeply structured taxonomies to relatively shallow knowledge graphs [40,41] [42]
[43].

2.4. Multi-Task Learning Objective

We optimize three primary objectives simultaneously to ensure that (1) the proposed
structure remains faithful to the original CSKB, (2) logical constraints are not violated, and
(3) the resulting subgraph is sufficiently sparse for interpretability.

(1) Reconstruction Loss

We use a contrastive margin-based loss to distinguish observed edges from negative
edges:

Lrec = ∑
(i,j,r)∈E

∑
(i′ ,j′ ,r′)∈Eneg

max
(

0, ϕ(er
ij)− ϕ(er′

i′ j′) + λ
)

,

where Eneg is a set of corrupted or sampled negative edges, and λ is the margin
hyperparameter. This encourages ϕ(er

ij) for true edges to exceed scores for false edges by a
margin.

(2) Deductive Regularization

We introduce a penalty that enforces basic logical constraints via Horn clauses of the
form:

es
ik ← er

ij ∧ et
jk,

meaning if (vi, r, vj) and (vj, t, vk) both hold, then (vi, s, vk) should likely hold. We
translate this to a differentiable constraint:

Llogic = E(es
ik←er

ij∧et
jk)

[
max

(
0, ϕ(es

ik)−min(ϕ(er
ij), ϕ(et

jk))
)]

.

If ϕ(er
ij) and ϕ(et

jk) are both large, but ϕ(es
ik) is small, the model incurs a penalty. This

pushes it toward consistency.

(3) Topological Sparsity

We add an ℓ1-penalty on the attention coefficients or dynamic weights to encourage
pruning:

Lsparsity = ∑
r∈R

∑
(i,j)

∥∥wr
ij
∥∥

1.

Weighting this appropriately reduces the connectivity of the final graph, focusing on
essential edges.
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Unified Objective

We combine these terms as follows:

L = Lrec + αLlogic + βLsparsity,

where α and β control the relative importance of logical consistency and sparsity,
respectively. By tuning these hyperparameters, we can emphasize or de-emphasize certain
structural properties of the final graph.

2.5. Algorithmic Implementation

Algorithmically, we adopt mini-batch training. Nodes and edges are sampled in
subgraphs, ensuring that relevant neighbors for each node are included. We compute the
GNN forward pass, derive ϕ(er

ij) for both positive and negative edges, and backpropagate
through the combined loss. We alternate between generating negative edges Eneg using
random or proximity-based corruption strategies to stabilize training. A specialized sam-
pler picks Horn clauses from the existing subgraph to populate Llogic. Over successive
epochs, the GNN parameters, relation-specific transformations, curvature parameters, and
gating factors all co-adapt to yield a refined embedding space. This approach is scalable
to millions of edges by leveraging efficient GPU-based message passing and negative
sampling routines [44] [45] [41,46].

3. Experimental Evaluation
3.1. Datasets

We conduct experiments on two prominent CSKBs:

ConceptNet 5.7

Contains around 1.2 million edges linking over 800,000 concepts with relations like
“isA,” “hasA,” “partOf,” “capableOf,” “desires,” and many more. The graph is multilingual
and includes crowd-sourced as well as text-mined edges with varying confidence scores.

ATOMIC 2020

Focuses on if-then reasoning about everyday events, featuring relations such as “xIn-
tent,” “xEffect,” “xNeed,” “xWant,” etc. There are roughly 1.3 million edges in total, each
representing a causal or motivational aspect of a scenario. ATOMIC edges are typically
more abstract and revolve around event-based reasoning.

We filter these datasets to ensure each relation type has a sufficient number of edges
and split them into training, validation, and test sets. Negative edges are generated by
randomly permuting nodes or sampling from low-confidence pairs that do not appear in
the original graph.

3.2. Baselines and Comparisons

We compare against several state-of-the-art methods:
- TransE: A classical knowledge embedding method that represents relations as trans-

lations in a Euclidean space. - ComplEx: Captures relational patterns using complex-valued
embeddings, providing better handling of symmetric and antisymmetric relations. - RGCN:
A relational GNN that applies distinct transformations for different relation types. - Graph-
SAGE: Learns to sample and aggregate neighbor features; we adapt it to handle multi-
relational data by simply concatenating relation embeddings. - KG-BERT / BERT-based:
A transformer-based approach that treats each triple as a textual input for classification,
sometimes used for knowledge base completion.

Our method differs by integrating dynamic edge weighting in hyperbolic space,
hierarchical attention, and deductive constraints under one framework.
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3.3. Evaluation Metrics

We employ three main metrics:
1. Edge Prediction AUC-ROC: For each triple in the test set, we assess whether ϕ(er

ij)

ranks it above negative edges. 2. Semantic Consistency: We randomly sample 500 new
edges inferred by the model (i.e., edges with no direct counterpart in the training set) and
ask human annotators to judge their plausibility. 3. Deductive Closure Rate: We measure
the percentage of logically implied triples (via Horn clauses) that the structured graph G ′
recovers.

3.4. Implementation Details

In all experiments, we use four GNN layers, each outputting 256-dimensional em-
beddings. For the attention mechanism, we adopt 8 attention heads, aggregated by con-
catenation. We use AdamW as the optimizer with an initial learning rate of 5× 10−4. The
hyperbolic curvature γ is initialized to −0.3. The margin λ in Lrec is set to 1.0, while α
and β are tuned over {0.1, 0.5, 1.0}. Training continues up to 200 epochs on 4 × NVIDIA
V100 GPUs. For negative edges, we adopt a half random, half proximity-based sampling
strategy, ensuring coverage of plausible but missing edges as well as obviously incorrect
ones [47].

We also implement dynamic mini-batching: each batch includes a central node, a
subset of its edges, and second-order neighbors. For each batch, we gather a random set
of Horn clauses from local triads or short paths, thereby populating Llogic. Gradients are
accumulated across mini-batches before an update step to handle large graphs efficiently.

3.5. Quantitative Results

The Table summarizes the comparative performance. Our model consistently out-
performs baseline methods across edge prediction, semantic consistency, and deductive
closure metrics.

Method Edge AUC Sem. Consistency Closure Rate
TransE 0.753 0.658 0.685
ComplEx 0.771 0.690 0.701
RGCN 0.781 0.704 0.729
GraphSAGE 0.776 0.695 0.712
KG-BERT 0.815 0.775 0.745
Ours 0.923 0.892 0.942

On ConceptNet 5.7, we achieve a 0.923 AUC, significantly higher than the next-best
baseline (KG-BERT with 0.815). Semantic consistency ratings on newly inferred edges
surpass all baselines by a comfortable margin (0.892 vs. 0.775 for KG-BERT). Notably, our
deductive closure rate reaches 94.2%, compared to 68.5% for TransE, indicating the strength
of our symbolic regularization. Similarly, performance on ATOMIC 2020 closely mirrors
these trends.

3.6. Ablation Studies

We conduct ablation studies to systematically assess the contribution of each core
model component. Our goal is to understand the sensitivity of the model to key architec-
tural choices and regularization strategies by removing or modifying specific elements and
observing the resulting performance degradation.

No Curvature Learning: In this setting, we replace the hyperbolic distance metric used
in dynamic edge weighting with a Euclidean distance function, effectively constraining
the representation space to a flat geometry. This modification results in a substantial 4.2%
drop in edge AUC, underscoring the importance of curvature-aware representations for
modeling hierarchical and transitive relationships. The performance degradation suggests
that hyperbolic space provides a more natural embedding for structured knowledge graphs,
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particularly those exhibiting tree-like properties. By forcing the model to rely solely on Eu-
clidean distances, the representation capacity for hierarchical relations is severely impaired,
leading to suboptimal edge predictions [48] [49] [50].

No Deductive Regularization: We remove the logical consistency loss Llogic, which
enforces deductive constraints during training. Without this regularization, the model
experiences a drastic reduction in closure rates, with values nearly halved across multiple
reasoning benchmarks. This finding confirms that logic-based constraints play an essential
role in ensuring coherent and transitive inference patterns. The lack of explicit logical
supervision allows the model to generate more flexible but less reliable representations,
often leading to violations of known logical rules. Our observations further indicate
that while the model still maintains general semantic consistency, it struggles to enforce
structured constraints such as transitivity and symmetry, which are crucial for robust
knowledge inference.

No Attention Stream: We ablate the hierarchical attention mechanism, relying solely
on edge-conditioned convolution to aggregate neighborhood information. This mod-
ification leads to a 6% drop in semantic consistency, indicating that attention mecha-
nisms provide a crucial degree of flexibility in determining neighbor importance. Without
attention-based weighting, the model assigns uniform significance to all neighboring nodes,
which can lead to noisy or redundant information propagation. Our results show that
attention-based aggregation helps refine neighborhood interactions, particularly in cases
where certain edges contribute more significantly to logical consistency and predictive
accuracy [51] [52] [53,54].

Our ablation results validate the necessity of three key components: (1) geometry-
aware weighting through hyperbolic distance, (2) hierarchical attention for flexible neighbor
aggregation, and (3) deductive constraints for enforcing logical structure. The interplay of
these components enables our model to outperform baselines and maintain a structured
representation of relational knowledge.

Ablation Setting Edge AUC Change (%) Semantic Consistency
Change (%)

No Curvature Learning -4.2% -3.5%
No Deductive Regularization -3.8% -6.1%
No Attention Stream -2.9% -6.0%

Table 3. Performance impact of different ablation settings, showing drops in edge AUC and semantic
consistency.

3.7. Qualitative Analysis

Beyond the quantitative evaluations, we analyze the interpretability and emergent
structure of the learned representations. Our model demonstrates an ability to induce
semantically meaningful clusters and hierarchies that reflect underlying conceptual rela-
tionships. In particular, we observe the following emergent properties:

Conceptual Layering: In commonsense graphs such as ConceptNet and ATOMIC,
certain edge types, such as “causes” and “xEffect,” naturally form layered structures in
hyperbolic space. For instance, a sequence of causal events such as “sleep deprivation”→
“tiredness”→ “accident risk” emerges as a structured trajectory, with each step following a
logical progression. The hierarchical arrangement of concepts allows the model to capture
transition dynamics more effectively, facilitating robust inference on unseen relations [55]
[56].

Hierarchical Generalization: The “isA” relation forms deep hierarchical structures,
with more general concepts positioned near the geometric center of hyperbolic space and
more specific entities branching outward. This organization aligns with theoretical expec-
tations, where broad categories such as “animal” or “vehicle” reside in central positions,
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while specific entities like “dog” or “car” extend further into space. The presence of such hi-
erarchies supports the argument that hyperbolic embeddings inherently encode taxonomic
structures in an optimal manner.

Contextual Refinement of Relations: One of the most intriguing phenomena observed
in our analysis is the model’s ability to refine ambiguous or noisy relations into more
coherent categories. Specifically, in ConceptNet, edges labeled as “relatedTo” often serve as
a catch-all for weakly associated concepts. However, our model learns to reassign some of
these edges into more specific subcategories such as “similarTo” or “partOf” when sufficient
contextual evidence is present. This emergent refinement suggests that the combination of
attention-based weighting and deductive constraints helps the model resolve ambiguities
in relational labeling [57] [58] [59].

Graph Structure Correction: Another emergent property of the model is its ability to
collapse redundant or ill-defined edges. For example, in ATOMIC, the raw graph structure
often contains multiple conflicting edges for the same node pair, leading to inconsistencies
in reasoning tasks. Through joint optimization with logical constraints, our model naturally
filters out implausible edges, effectively denoising the graph. This property enhances the
reliability of downstream reasoning tasks, as the inferred structures align more closely with
human intuition.

Semantic Consistency and Logical Coherence: The integration of hyperbolic geom-
etry with deductive regularization not only enhances hierarchical organization but also
strengthens logical coherence. Our qualitative evaluation suggests that the model learns
to enforce transitivity and symmetry constraints implicitly, reducing inconsistencies in
inferred relations. For example, if the model infers that “A isA B” and “B isA C,” it is
more likely to correctly infer “A isA C” without explicit supervision, demonstrating robust
logical generalization.

To quantify these qualitative observations, we measure the model’s ability to refine
noisy relations and improve taxonomic structure. We introduce a metric called Taxo-
nomic Purity (PT), which assesses the degree to which inferred hierarchies align with
human-curated taxonomies. Higher PT values indicate stronger semantic consistency in
hierarchical embedding.

Model Variant Taxonomic Purity (PT) Relation Refinement Rate
(%)

Full Model 85.7% 78.3%
No Deductive Regularization 74.5% 62.1%
No Attention Stream 76.2% 65.4%
Euclidean Space 67.9% 59.8%

Table 4. Taxonomic purity and relation refinement rate across different model configurations. The
full model achieves the highest consistency, while Euclidean representations struggle to capture
hierarchical structure.

Our analysis highlights that each component—hyperbolic representation, deductive
constraints, and hierarchical attention—contributes significantly to both quantitative per-
formance and qualitative interpretability. The model’s ability to self-organize hierarchical
structures, refine ambiguous relations, and correct graph inconsistencies demonstrates its
potential for robust and explainable knowledge graph completion [60] [61] [62].

4. Theoretical Analysis
4.1. Expressiveness and Graph Isomorphism

We examine the capacity of our architecture to distinguish distinct graph structures,
particularly in the presence of multi-relational edges. A well-known measure of expres-
siveness for GNNs is their equivalence (or lack thereof) to the Weisfeiler-Lehman (WL)
test.
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Theorem 1

The proposed hybrid GNN architecture is at least as powerful as the 1-WL test in distinguishing
non-isomorphic multi-relational graphs.

Proof Sketch: Our edge-conditioned convolution captures relation-specific neighbor
aggregation, which generalizes the 1-WL color refinement on node labels. The hierarchical
attention mechanism further introduces a non-uniform weighting scheme over neighbors.
By combining these two aspects, the model can differentiate between nodes that would oth-
erwise be considered equivalent under standard message passing. Moreover, the presence
of an explicit relational encoding, Mr, ensures that different relation types do not collapse
into identical aggregation patterns, thereby augmenting WL’s node label refinements [63]
[64] [65]. In simpler terms, if two multi-relational graphs are distinct, they will eventually
produce different embedding distributions under our proposed architecture, provided
sufficient layers and appropriate parameterization. Thus, we do not lose expressiveness
compared to standard relational GNN approaches; we strictly gain from attention and
curvature-based expansions.

4.2. Hyperbolic Geometry for Hierarchical Data

Hierarchically structured data often violates Euclidean distance properties, since the
distance between siblings (e.g., “dog” and “cat”) might appear small, but their common
ancestor in the “mammal” or “animal” category might be conceptually close to one or both
in a way that Euclidean geometry cannot easily capture without significant dimensional
expansion. Hyperbolic or Lorentzian spaces, by contrast, can embed trees or tree-like
structures with far lower distortion [66] [67].

When γ < 0, the model primarily gains from the exponential volume growth of
hyperbolic space, enabling nodes deeper in the hierarchy to reside further from a conceptual
center. Our approach learns γ to adjust curvature such that the network can discover an
optimal embedding manifold. If higher-level relations need more hierarchical structure, γ
moves to more negative values, intensifying hyperbolic effects. Conversely, if data exhibits
less hierarchy, γ shifts closer to 0, approaching a near-Euclidean regime.

4.3. Logical Constraints and Consistency

Symbolic constraints enforced by Llogic ensure that subgraphs form consistent sets of
implications. Specifically, we consider Horn clauses of the form:

(r, t→ s) ⇔ es
ik ← er

ij ∧ et
jk.

We unify these clauses in a differentiable manner by penalizing large discrepancies
between ϕ(es

ik) and min(ϕ(er
ij), ϕ(et

jk)). This approach is more flexible than strictly enforcing
symbolic constraints, allowing the model to weigh the cost of potential clause violations
against the overall reconstruction objectives. The net result is a balance that yields high
deductive coverage without forcing every possible transitive edge to appear explicitly.

Moreover, to maintain consistency, we can introduce additional constraints for mutually
exclusive relations or contradictory statements. For instance, if a domain rule states that
“an entity cannot simultaneously be a dog and a fish,” the model can incorporate a pairwise
penalty whenever ϕ(eisA=dog

iv ) and ϕ(eisA=fish
iv ) are both high.

5. Conclusion
We have introduced a novel framework that addresses the crucial challenges of scaling,

pruning, and logically structuring commonsense knowledge bases. Our solution combines
(1) an edge-conditioned GNN stream that handles multi-relational data by leveraging
relation-specific transformations, (2) a hierarchical attention mechanism that dynamically
refines or prunes edges, (3) curvature-aware embedding in hyperbolic or Lorentzian spaces
to capture hierarchical relations, and (4) a multi-task learning objective that balances
reconstruction fidelity, deductive consistency, and topological sparsity.
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Empirical results on ConceptNet and ATOMIC confirm significant improvements over
existing baselines such as TransE, ComplEx, and GNN variants. Our method not only
achieves superior edge prediction performance but also excels in deductive closure, con-
firming it systematically identifies transitive and causal links. Ablation studies demonstrate
that removing curvature learning or logical constraints materially degrades performance,
underscoring the effectiveness of integrating geometry and symbolic logic [68] [69] [70].

From a theoretical standpoint, we show that our hybrid architecture is at least as
expressive as the Weisfeiler-Lehman test, even in multi-relational contexts, and that hyper-
bolic geometry provides a powerful inductive bias for hierarchical or tree-like structures
often found in commonsense domains. The differentiable logic constraints allow the model
to elegantly reconcile structural completeness with interpretability, avoiding an explosion
of spurious or contradictory edges.

Our work opens several avenues for future exploration. First, extending the ap-
proach to temporal commonsense knowledge could capture evolving relations (e.g., “morning
routine” changes to “afternoon routine”). Second, integrating large language models as
external knowledge sources or as means to generate probable Horn clauses could further
improve coverage. Third, investigating advanced meta-reasoning tasks, where the model
must reconcile contradictory statements or weigh the reliability of different sources, stands
as another promising direction [71] [72] [73]. Finally, the techniques developed here, par-
ticularly those involving joint geometric-symbolic optimization, may prove relevant to
structuring broader classes of knowledge graphs beyond commonsense, including special-
ized scientific or biomedical ontologies. Uniting the strengths of geometric representation
learning, attention-based relational modeling, and differentiable logic constraints, our
framework paves the way for more coherent, scalable, and interpretable commonsense
knowledge bases. We envision this methodology as a step toward advanced AI systems
capable of flexible, robust reasoning across diverse domains of everyday human experience
[74] [75] [76].
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